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Abstract 
 

This thesis documents a PhD research program undertaken at Swinburne 

University of Technology between the years 2000 and 2004. The research was 

funded by the Cooperative Research Centre for Cast Metals Manufacturing and was 

undertaken in collaboration with Nissan Casting Plant Australia Pty Ltd and the Ford 

Motor Company Australia Limited. This thesis reports on the investigation of the 

possibility of using an ultrasonic sensing-based, non-destructive testing system to 

detect gas porosity defects in aluminium die casting parts with rough surfaces. The 

initial intention was to develop a procedure to obtain ultrasonic signals with the 

maximum possible amplitude from defects within the rough surface areas of the 

castings. A further intention was to identify defects with the application of a suitable 

signal processing technique to the raw ultrasonic signal. The literature review has 

indicated that ultrasonic techniques have the potential to be used to detect sub-

surface defects in castings. The possibility of classifying very weak ultrasonic signals 

obtained from rough surface sections of castings through a neural network approach 

was also mentioned in the literature. An extensive search of the literature has 

indicated that ultrasonic sensing techniques have not been successfully used to detect 

sub-surface defects in aluminium die castings with rough surfaces. 

 

Ultrasonic inspection of castings is difficult due to the influence of 

microstructural variations, surface roughness and the complex shape of castings. The 

design of the experimental set-up used is also critical in developing a proper 

inspection procedure. The experimental set-up of an A-scan ultrasonic inspection rig 

used in the research is described in this thesis. Calibration of the apparatus used in 

the inspection rig was carried out to ensure the reliability and repeatability of the 

results. This thesis describes the procedure used to determine a suitable frequency 

range for the inspection of CA313 aluminium alloy castings and detecting porosity 

defects while accommodating material variations within the part. The results 

obtained from ultrasonic immersion testing indicated that focused probes operating at 

frequencies between 5 MHz and 10 MHz are best suited for the inspection of 

castings with surface roughness Ra values varying between 50 μm and 100 μm. For 
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the purpose of validating the proposed inspection methodology, gas porosity defects 

were simulated through side-drilled holes in the in-gate section of selected sample 

castings. Castings with actual porosity defects were also used in this research. 

 

One of the conclusions of this research was that it was extremely difficult to 

detect defects in castings with surface roughness above 125 μm. Once the ultrasonic 

signal data was obtained from the sample aluminium die castings with different 

surface roughness values ranging from 5 μm to 150 μm, signal analysis was carried 

out. Signal feature extraction was achieved using Fast Fourier Transforms (FFT), 

Principal Component Analysis (PCA) and Wavelet Transforms (WT) prior to passing 

the ultrasonic signals into a neural network for defect classification. MATLAB tools 

were used for neural network and signal pre-processing analysis. The results 

indicated that poor classification (less than 75%) was achieved with the WT, PCA 

and combination of FFT/PCA and WT/PCA pre-processing techniques for rough 

surface signals. However, the classification of the signals pre-processed with the 

combination of WT/FFT, FFT/WT and FFT/WT/PCA classifiers provided much 

better classification of more than 90% for smooth surface signals and 78% to 84% 

for rough surface signals. The results obtained from ultrasonic testing of castings 

with both real and simulated defects were validated with X-ray analysis of the 

sample castings. The results obtained from this research encourage deeper 

investigation of the detection and characterisation of sub-surface defects in castings 

at the as-cast stage. Implications for the industrial application of these findings are 

discussed and directions for further research presented in this thesis. 
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CHAPTER 1.  

INTRODUCTION 

1.1 OVERVIEW   

This thesis documents a Doctoral research program undertaken at Swinburne 

University of Technology (SUT), during the period from 2000 to 2004. The research 

work presented herein was part of a larger research program involving a number of 

researchers from SUT and Deakin University. The research was funded by the 

Cooperative Research Centre for Cast Metals Manufacturing (CRC CAST) at the 

Industrial Research Institute Swinburne, a research centre attached to SUT. It was 

undertaken with the co-operation of Nissan Casting Plant Australia Pty Ltd, and the 

Ford Motor Company Australia Limited. This research was a subset of an overall 

research program titled “Automated Fault Detection Systems” in the high pressure 

die casting industry.  

 

The specific objective of this research project was the investigation and 

development of an ultrasonic inspection technique to detect gas porosity defects in 

aluminium die casting parts with rough surfaces. The motivation for this research 

was the casting industry’s requirement for an advanced inspection system to identify 

sub-surface defects in aluminium die castings in the as-cast state.  

 

The aim of this chapter is to provide a background to the research project and 

an overview of problems encountered in die casting quality inspection. This chapter 

also describes the objectives of the project and provides an outline of the whole 

thesis. 
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1.2 BACKGROUND 

Casting is one of the most ancient metal-shaping techniques, and is the 

process of forming metal objects by melting metal and pouring it into moulds [1]. 

Discontinuities are a common problem in castings. Discontinuities are irregularities, 

breaks, or gaps in the material structure. Most types of casting discontinuities are 

visible to the naked eye and are caused by variation in the casting process. However, 

some of them are not detectable by visual inspection because they occur below the 

surface of the material. The sub-surface is the most highly loaded region of the 

material. Therefore, sub-surface discontinuities such as cracks, inclusions, or pores 

greatly influence the ability of a component to withstand load. Sub-surface 

discontinuities must be detected and identified before remedies can be developed to 

eliminate them [2]. 

 

The aluminium die casting industry is one of the foremost suppliers of 

castings to the automotive industry. The role of the die casting manufacturer is to 

deliver high quality castings to this industry. The manufacturer is usually required to 

replace the castings if found defective during the customer’s machining process. This 

places a financial burden on the manufacturer. Hence, the die casting manufacturer 

prefers to detect discontinuities during the production process. The detection of faults 

prior to the transfer of products to the clients not only saves money and time, but also 

enhances the manufacturer’s reputation in relation to quality. Therefore, it is essential 

to develop a technology that will assist the casting industry to achieve quality 

assurance and to remain competitive in the international market.  

 

With the emergence of modern design techniques and aluminium alloys, the 

mechanical strength of castings is usually not a problem. However, automotive 

castings are often in contact with fluids under pressure, including transmission fluid, 

engine oil and coolant. Hence, a more likely problem is that, the castings with defects 

are subjected to leakage under pressure. Therefore, die casting manufacturers inspect 

their castings for defects that may cause leakage under pressure prior to supplying 

them to their customers. These defects primarily relate to porosity and cracks. 
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In the 21st century, casting manufacturers need to maintain standards and 

keep abreast of the latest technologies to be competitive in the international market. 

George Johnson1 expressed a similar view in his keynote address on “The 

people/technology partnership”.  

 

“To survive and prosper in the coming years, successful foundries will have 

to be leaders in quality, cost, technology and response to customer needs” 

 

Even though this statement was made in the early 1990’s, it remains valid for the 

casting industries. Hence, maintaining an ISO 9000 series certification is not 

sufficient to maintain a market share of produced goods. Quality assurance programs 

will often pass or reject the entire production lot based on randomly inspected 

samples. If a quality system detects a fault in a single sample at customer’s site, the 

whole consignment will be scrapped. Therefore, it is essential that the manufacturer 

detect every fault, in order to avoid costly delays, ever increasing scrapping cost and 

customer dissatisfaction. As the cost of scrapping goes up, there is an increasing need 

for a cost effective advanced inspection system. The new system should emulate the 

skills, decision making capacity and the supervisory control of the operator. A 

thorough knowledge of the casting process is an essential requirement for the 

development of a new quality inspection system [2].  

 

As mentioned above, a casting organisation’s relationship with a customer is 

enormously influenced by the quality of castings delivered and the satisfactory 

quality requirement varies from industry to industry. Thus, the inspection process is 

an important step in the quality assurance program for most die casting 

manufacturers [3]. While there are a number of elements that go into the 

implementation of a Total Quality Management (TQM) system, in this research the 

focus is on Non-Destructive Testing (NDT), specifically ultrasonic based inspection 

for detecting sub-surface defects in the aluminium die casting industry.  

 

                                                 
1 The people/technology partnership, George. G. Johnson, General Manager Central Foundry 

Division, GM Corporation in Die Casting Engineer 1992, 36 (2) pp. 3 
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NDT techniques include ultrasonic, X-ray, liquid penetrant, eddy current, 

leak and magnetic particle testing. They have been previously used in different areas 

of the casting industry, mostly on machined casting products [4]. At present, in the 

automotive industry an operator detects defective castings off-line, using X-ray or 

leak NDT methods. However, none of these systems provides feedback to the die 

casting machines in real time. Due to the amount of time required, it is not possible 

to carry out a 100% inspection of all castings produced using these methods. Hence, 

there is a compelling need for a reliable high speed inspection system to identify 

defects. 

 

Rickards and Wickens [3] identified the most important problem areas in the 

casting inspection process and brought courses of action to the attention of casting 

industries in their investigation. These were based upon the wider understanding of 

NDT techniques used, making the best use of the equipment available and ensuring 

that the correct procedures were employed.  

 

In this investigation, importance of NDT inspection methods has been 

emphasised for overall casting inspection. However, the ability to test castings using 

NDT methods is dependent on the type of metal, surface roughness, grain structure 

and type of defect to be detected. These factors increase the overall complexity 

involved in identifying quality castings using ultrasonic inspection.  

1.3 RESEARCH PROBLEM AND OBJECTIVES 

Most ultrasonic techniques were developed in the die casting industry to 

inspect castings with simple geometries and machined surfaces. A technique could 

not be described as non-destructive if it requires alteration of a surface prior to 

inspection. Another problem with this method is that it may expose the porosity 

defects just beneath the rough surface. Defects at greater depth (more than 3 or 4 

mm) are not of much consequence in casting inspection [5]. The machining process 
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would also change the substrate structure of the casting and therefore, change the 

overall properties of the part to be inspected.  

 

In the past, ultrasonic inspection of castings was restricted by their 

metallurgical and physical characteristics. Typically, the grain size and surface 

roughness vary between castings manufactured within the same production cycle. 

This variation is acceptable in the die casting industry as long as it does not affect the 

integral strength and intended function of the castings. However, in the ultrasonic 

inspection of castings, the signal amplitude is significantly affected by the material 

variations such as rough surfaces and non-uniform grain size.  

 

The noise contained in the ultrasonic signal caused by rough surfaces and 

grain size variations of castings is difficult to eliminate totally. Castings are less 

commonly tested by ultrasonic methods because these structural variations usually 

create high ultrasonic signal noise. Two research questions arise from these 

problems: (a) What are the limitations to obtaining useful signals from castings with 

rough surfaces using ultrasonic NDT techniques?; and (b) Once a ultrasonic signal is 

obtained, is it possible to identify porosity type defects in castings with the use of 

sophisticated signal processing techniques? These two questions were investigated 

and addressed in this research to the benefit of both the casting and NDT industries.  

 

The research project was undertaken in accordance with the following 

problem statement:  

 

To investigate the possibility of using an ultrasonic inspection technique to 

detect small sub-surface defects (gas porosity) near the front rough surface of 

castings with varying grain size, by classifying weak and noisy ultrasonic signals 

using suitable signal processing techniques. 

 

According to Krautkrämer and Krautkrämer [5], the success of casting 

inspection generally depends on the selection of a suitable probe frequency. The 

resolution of the ultrasonic probe, or the smallest defect size that can be detected, is 

half the wavelength. Therefore, smaller defects can be detected with higher 
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frequencies of ultrasound. Unfortunately, the higher the frequency also means the 

higher the rate of signal damping in a material, and more scattering at the rough 

surface. In terms of this project the measurement capability of the probe is 

compromised if the frequency of the ultrasound is too low (1 MHz or 2 MHz) 

making it hard to detect defects less than one millimetre in size. Hence, there is a 

need to obtain a balance between the possibility of ultrasonic inspection and the 

requirement to detect small gas porosity defects in rough surface castings.  

 

The overall aim of this project is to develop an ultrasonic based inspection 

system, with the potential for future automated on-line application to detect sub-

surface defects in aluminium die castings. Specifically, the objectives as described in 

the research problem statement are:  

• To investigate the use of an ultrasonic inspection system for detecting the 

smallest possible gas porosity defect near to the inspection surface (up to 4 

mm in depth) of complex shaped aluminium die castings with varying grain 

size and surface roughness. 

• To identify the presence of defects by classifying ultrasonic signals obtained 

from castings using suitable signal processing techniques. 

 

It is anticipated that the outcomes of this investigation on the ultrasonic 

inspection of die castings will lead to the development of an ultrasonic based sub-

surface defect detection system.  

1.4 NEED FOR FAULT DETECTION 

An inspection system based on use of an ultrasonic signal subject to suitable 

signal processing offers many advantages to casting manufacturers. Among them are 

consistent inspection to ensure that customer requirements are met, increased 

inspection throughput, reduced labour costs and statistical reporting to assist in in-

process monitoring. Automation of a system based on this methodology enables 
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ultrasonic inspection to become an integral part of the manufacturing process. The 

integration of a modern inspection system into the production process will be one of 

the major challenges in the field of automated ultrasonic inspection. 

 

The development of an effective ultrasonic signal processing method is 

necessary to achieve effective inspection. It eliminates the requirement for a manual 

operator as the decision maker in the ultrasonic inspection of castings. Automated 

ultrasonic inspection would make possible the checking of each casting, and 

immediately alert the operator about the presence of defects. Therefore, it would 

eliminate the sampling rate limitations, delays and much of the cost associated with 

X-ray and industrial computer tomography systems. High porosity castings would 

not be passed on to the customer, resulting in savings of transport; machining and re-

inspection costs. This would enhance the reputation of the casting plant as a reliable 

supplier of high quality castings. The ability to detect a porosity problem 

immediately would also save valuable machine time, reduce scrap and re-melting 

and increase effective casting plant capacity. Furthermore, post-cast processes, such 

as machining, are carried out weeks or months later in another plant. Hence, early 

detection of porosity defects will result in greater cost savings for casting 

manufacturers. 

1.5 OVERVIEW OF METHODOLOGY 

To achieve the research objectives, a methodology was developed to 

determine the limitations of ultrasonic inspection of castings with rough surfaces and 

varying grain size. This methodology includes:  

• Obtaining ultrasonic signals from selected sample castings with optimised 

inspection parameters such as frequency of operation and distance between 

probe and part 

• Determining ultrasonic velocity in selected casting material 
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• Obtaining a signal with the maximum signal-to-noise ratio from the rough 

surface of the castings with the correct experimental set up, and  

• Applying the appropriate signal pre-processing and artificial neural network 

techniques for data extraction. Then, classifying ultrasonic signals obtained 

from sample castings for the purpose of determining the presence of porosity 

type defects. 

 

The starting point for any ultrasonic NDT testing is to select and study 

several sample castings and their defect types. For this research, production sample 

castings were selected due to the poor correlation between tests conducted on 

laboratory produced samples and shop floor produced die castings. An investigation 

was carried out to select an appropriate ultrasonic inspection technique (contact and 

immersion type) for the selected sample castings. An ultrasonic inspection rig was 

designed and constructed to inspect the samples with an ultrasonic immersion testing 

system. Procedures were developed such that the problems of surface roughness and 

grain size variation were properly addressed. Several experiments were carried out to 

determine the actual velocity of ultrasound energy in the selected material, optimum 

distance between probe and part and suitable frequency. Then, the signals were 

obtained from ultrasonic immersion testing of castings to determine the presence of 

both the simulated and real gas porosity defects.  

 

The next step in the process of ultrasonic defect identification is pre-

processing and analysis of the ultrasonic signals obtained from the rough surface of 

the castings. Signal processing and classification was carried out using the neural 

network toolbox in MATLAB software. Furthermore, a series of trials were done to 

obtain satisfactory ultrasonic signals from selected castings sections containing gas 

porosity type defects. Thereafter, a substantial number of inspection trials were done 

on both defective and non-defective castings to provide sufficient ultrasonic signals 

for training and testing the neural network component of the inspection system. 

Finally, a radiographic examination of castings subjected to ultrasonic inspection was 

carried out to validate the results obtained from ultrasonic inspection. 
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1.6 PERCEIVED CONTRIBUTIONS OF THIS RESEARCH  

This research has made a number of specific contributions to the field of 

ultrasonic non-destructive testing in die casting applications. These contributions are 

summarized as follows: 

  

• Calibration of experimental devices  

 
Different calibration methods have been used in ultrasonic inspection. 

In this research, emphasis was given to the apparatus used in the ultrasonic 

immersion testing, namely the PUMA robot and ultrasonic testing unit. A 

specific methodology was developed and implemented for repeatedly 

obtaining accurate ultrasonic signals from the components under inspection. 

Inspection trials were then carried out to determine the reproducibility of the 

measurement. This calibration process was carried out continually throughout 

the experimental phase of the project. The calibration results are described in 

Chapter 4. The implementation of a calibration methodology for the 

experimental devices reduced the amount of uncertainty and increased the 

inspection accuracy associated with the experimental results significantly.  

 

The results of this analysis were reported in a paper published in the 

Australian Non-destructive Testing Journal (listed in Appendix A.1). 

 

• Ultrasonic testing of castings with material variation  

 
The effects of material variation on ultrasound signals were 

demonstrated with a comprehensive experimental program. These 

experiments addressed the problem of selecting a suitable frequency for 

inspecting inhomogeneous aluminium alloy castings. The grain size in the 

selected high pressure automotive die castings was mostly in the fine-to-

medium range which is less than 0.5 mm in diameter. It has been determined 

in this research that the loss of ultrasonic signal echo due to grain size 

variation was small when, compared with the variation caused by changes in 
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the surface roughness of the casting. Hence, a technique was developed 

through isolation of the different factors affecting the signal echo in order to 

select a suitable frequency for inspecting the sample castings. The 

experiments relating to material variation demonstrated that the difficulty of 

testing castings arises from scattering of ultrasound at the rough front surface 

of the casting. The experimental results were used in developing a framework 

for a generic ultrasonic inspection procedure for aluminium alloy die 

castings. The experimental results also provided guidelines for selecting 

suitable transducer frequencies which would accommodate both the variation 

in material properties and the critical defect size to be detected. 

 

The results of the analysis on the effects of grain size and surface 

roughness variation with respect to ultrasonic inspection of aluminium alloy 

die castings were published in Materials Evaluation, August 2005 (Appendix 

A.1). 

 

• Classification of weak ultrasonic signals 

 
The difficulty in identifying defects through visual analysis of the 

ultrasonic signals from rough surface aluminium die castings is emphasised 

in this research. Little research work had been carried out with castings 

having surface roughness values greater than 50 μm. It is important to inspect 

the castings in the as-cast state (surface roughness above 50 μm to 100 μm) 

because inspection after further processing will diminish the value of non-

destructive testing. Hence, the proposed methodology for detecting gas 

porosity defects using actual and simulated defects of 0.5, 0.7 and 1 mm side-

drilled holes in the as-cast castings using ultrasonic inspection was 

performed. The neural network approach successfully accommodated the 

noise in the ultrasonic signals obtained from castings with surface roughness 

ranging from 50 μm to 100 μm. Nevertheless, defects associated with 

castings of surface roughness beyond 50 μm could not be classified using this 

approach unless sophisticated signal pre-processing techniques are used. One 

of the contributions of this research was in obtaining and classifying weak 



 
CHAPTER 1. INTRODUCTION 

 

11 

and noisy ultrasonic signals from as-cast rough surface die castings with 

defects (Ra value above 50 μm). It has been achieved through the selection 

and application of both appropriate ultrasonic inspection and signal 

processing techniques and parameters for this particular research problem. 

This achievement enables subsequent analysis leading to identification of 

defects in castings. 

 

The results of this investigation were presented at the North American 

Die Casting Congress 2003 in Indianapolis, U.S.A. (Appendix A.1).   

 

• Hybrid signal pre-processing technique 

 
A contribution of this research was the investigation of combining existing 

signal pre-processing techniques for the purpose of maximising ultrasonic signal 

classification performance. The signal pre-processing techniques investigated 

included Fast Fourier Transform, Wavelet Transform and Principal Component 

Analysis. Signal pre-processing techniques usually use either time-variant or 

frequency-variant signals. However, in this research both the time-variant and 

frequency-variant signals were used in combination. The signal pre-processing was 

carried out prior to passing the ultrasonic signals into the neural network for defect 

classification. An approach to signal pre-processing not attempted previously has 

been investigated in this research. This approach was the application of FFT and WT 

pre-processing methods in sequence to investigate the possibility of achieving an 

improved classification percentage. The results indicated that this approach increased 

the defect classification percentage significantly – up to 84% for rough surface 

signals compared to 68% classification without signal pre-processing.  

 

The outcomes of this research provide a basis for the development of an 

ultrasound based sub-surface defect detection system for aluminium die castings. The 

research exploits the advancements in Artificial Neural Networks, signal processing 

techniques and NDT technology in developing a non-contact inspection system to 

detect gas porosity defects in rough surface castings. Moreover, the inspection 
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system has the attributes required for on-line installation in the manufacturing 

environment. 

1.7 OUTLINE OF THE THESIS 

This thesis is divided into nine chapters as described below: 

 

Chapter 1 presented a brief introduction to the background of the project and 

the problems to be investigated. The issue of inspection of castings for sub-surface 

defects is an old one and various inspection methods have been investigated over 

time. This project confines itself to the use of ultrasonic inspection techniques for the 

detection of sub-surface defects in rough surface aluminium die castings. Hence, the 

objectives emphasised the need to obtain an understanding of the casting process and 

the use of ultrasonic inspection techniques.  

 

Chapter 2 contains an extensive literature review detailing the casting process 

and associated defects. It also deals with the external and internal factors affecting 

the ultrasonic inspection of castings and the work previously carried out in the area 

of NDT with respect to casting inspection. Also detailed is the application of 

artificial intelligence techniques in ultrasonic NDT, in particular, the application of 

neural network and signal pre-processing techniques for defect classification. 

 

Chapter 3 describes the background theory and different methods of 

ultrasonic inspection, and provide details on ultrasonic transducers and different 

couplant types used in the ultrasonic inspection of castings. The background 

information on neural networks and their parameters is also provided in this chapter. 

 

Chapter 4 presents the experimental program that was designed and 

implemented to inspect castings obtained from the Ford Motor Company and Nissan 

Casting Plant, Australia. The calibration of the test equipment is also described. 
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Chapter 5 outlines the ultrasonic inspection of castings, and explains the 

results obtained while varying the factors affecting ultrasonic inspection. This is one 

of the major building blocks of this thesis in that it provides an understanding of the 

practical difficulties in applying the ultrasonic inspection process to the casting 

application. 

 

Chapter 6 details potential neural network topologies to be used in this 

research to detect defects once the best possible signal, in terms of amplitude, is 

obtained from the castings. This chapter also addresses the selection of each 

parameter of the neural network used in classifying ultrasonic signals from castings 

with and without defects. 

 

Chapter 7 presents the results of the inspection carried out on aluminium 

castings with rough surfaces, including the results obtained from neural network 

classification of the ultrasonic signals from castings with defect and without defects. 

The classification performance obtained using neural networks and different signal 

pre-processing approaches are also presented. 

 

Chapter 8 compares the results obtained using different signal pre-processing 

approaches with neural networks for defect classification. In addition, it evaluates the 

effectiveness of the developed methodology in relation to approaches described by 

other researchers. 

 

Finally, Chapter 9 summarises the findings of the research program, and 

identifies areas for further research. 
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CHAPTER 2.  

LITERATURE REVIEW 

2.1 OVERVIEW 

The literature review covers the following major areas: 

• High Pressure Die Casting (referred to as die casting in this thesis)  

• Sub-surface casting defects  

• Non-Destructive Testing & Evaluation (NDT&E)  

• Ultrasonic inspection 

• Automated fault detection systems  

• Artificial Neural Network (ANN), and 

• Signal pre-processing techniques. 

 

The objective of this review was to acquire an understanding of the context of 

the research and provide an impetus and background to the project methodology in 

the field of ultrasonic NDT of castings. Sources used included books, journal articles, 

trade journals, conference publications, International and Australian Standards on 

NDT, patent applications and NDT&E related websites. 

 

As emphasised in the previous chapter, a deeper understanding in the area of 

NDT and casting quality was essential for this research. Hence, the literature review 

highlights the understanding of NDT and casting quality, their relationship and 

different signal processing techniques that can be used for defect classification. This 

chapter is divided into three major sections, namely: 
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• Die Casting 

• Ultrasonic Inspection of Castings, and 

• Signal Processing and Neural Networks. 

 

An overview of the casting industry, its process and the defect types is 

presented in Section 2.2. The subsequent sections describe a review of ultrasonic 

testing and its limitations with respect to the inspection of castings. Finally, a review 

of automated inspection systems is presented. The emerging trends in this research 

area are also discussed. 

2.2 CASTING INDUSTRY 

2.2.1 Overview 

A metal casting may be defined as a metal object produced by pouring molten 

metal into a mould containing a cavity which has the desired shape of the end 

product, and allowing the molten metal to solidify in the cavity [1]. Historical data 

indicates that casting began around 4000 B.C. According to Taylor et al. [6], copper 

was the first metal to be cast – it was used to produce bells for large cathedrals at the 

beginning of the 13th century. In the 14th through 16th centuries, metal casting 

evolved from what was an art form to the casting of engineering shaped components 

[7]. However, the first authenticated casting in aluminium was produced in 1876 [8]. 

 

In the present context, die casting involves all processes that are based on use 

of metallic moulds [9]. The selection of the mould materials depends on the alloy 

being cast, the number of parts to be produced and the size of the parts. The process 

is a highly mechanised one, in which dies may be interchanged without making 

changes to the machine. Metal for die casting is melted in holding pots and 

transferred to the die casting machine pot as required. Dies are water-cooled so as to 

maintain them at constant operating temperatures. This prolongs the life of the die 
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and provides the fastest allowable cooling rate for castings so that they develop 

optimum properties [9]. 

 

High Pressure Die Casting (HPDC) differs from permanent mould castings 

wherein the metal is forced into the mould cavity under high pressure. In HPDC, 

molten metal is injected into a metal mould (die) at a high velocity. The solidification 

of the metal results in the end product [10]. 

 

As shown in Figure 2.1a, two die sections are mounted securely in a machine 

so that one is stationary, the other movable. The HPDC cycle starts when the two die 

halves are clamped together by the die casting machine. The metal is then injected 

into the die at very high velocity where it solidifies (Figure 2.1b). The die halves are 

separated and the casting is ejected from the die using ejector pins. 

 

Advantages of the HPDC process include the ability to produce thin sections 

and the short cycle time involved. In comparison with other metal working methods, 

die casting is carried out with a minimum expansion of metal [11]. Die castings are 

so accurate in size that very little or no subsequent machining is necessary after 

removal of the gate2. 

 

 

 

 

 

 

 

 

 

                                                 
2 According to Taylor et al. [6], gates are channels through which molten metal flows to fill a 

mould cavity. 
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Figure 2.1 Cold chamber high pressure die casting set up (a) Molten metal poured 

into short sleeve chamber (b) Molten metal filled in the die cavity [12] 

 

2.2.2 Casting Defects  

In the high pressure die casting industry, the major problem is the inability of 

the die casting process to produce parts without discontinuity [13]. There are a 

number of factors that cause discontinuities in the castings. Sinha [14] investigated 

the types of failures in castings arising from manufacturing discontinuities. The 

discontinuities are regarded as true defects or flaws when the satisfactory function or 

appearance of the product is affected. Castings with such discontinuities are rejected 

and scrapped.  
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The logical classification of casting defects presents great difficulties due to a 

wide range of contributing causes, but grouping the defects in certain broad 

categories based on origin of defects is an accepted practice. Davies [15] stated that 

casting design and technique of manufacturing have an influence on the production 

of sound castings. According to Davies, depending on the location of the casting 

defects, they can be divided into two major categories, namely surface and sub-

surface defects. 

 

a. Surface Defects 

Surface defects are discontinuities occurring on the surface or near to the 

surface (exposed to surface) of the castings. Surface defects in aluminium die 

castings can result from deficiencies at any stage of the manufacturing process [16]. 

The prevention of surface defects is a key requirement when producing most 

aluminium die castings. The prevention of defects related to the casting process can 

best be achieved through proper design of the die and feed system and control of the 

variables associated with the die casting process [16].  

 

Rowley [17] has described in detail the major surface defects of castings – 

gas run, cope defect, seams, flow marks and slag inclusions. Most of these defects 

are related to the surface of the die and temperature of the mould, and result from 

pouring metal that is too cold into the mould. Usually these imperfections occur in 

castings with relatively light sections where two surfaces of flowing metal meet and 

do not fuse properly. In cold shuts, small shot-like spheres of metal are almost 

completely distinct from the casting. This can usually be prevented by using higher 

pouring temperatures. Surface defects may also be related to the finishing process at 

the surface. Crack-like defects that emerge on the surface of a material through 

propagation are possible sources of failure under conditions of either stress or 

corrosion, or both [6]. The types of inspection systems used to detect these defects 

are discussed in Section 2.3.3.  
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b. Sub-surface Defects 

Sub-surface defects are not visible to the naked eye due to their occurrence 

below the surface of the castings. Typical casting sub-surface defects are [17]:  

• Shrinkage cavities generated by contraction during solidification and 

insufficient feed of metal 

• Blowholes and porosity occurring when gas bubbles are released during 

pouring and cooling 

• Non-metallic inclusions generated by interaction between the molten metal 

and the mould material, a piece of the mould material itself, or by oxide films 

swept along with the metal pouring, and 

• Hot tears caused by shrinkage during solidification, in combination with 

restrictive stresses. 

Unlike the crack-like defects, all other casting defects are more or less voluminous 

and globular. For instance, the gas porosity defect is the most common voluminous 

and globular defect in high pressure die castings [16].  

 

Among the different sub-surface defects presented in this section, porosity 

type defects may lead to hazardous flaws with regard to the loading capability of a 

material. These defects can be defined as voids in the material where the cast metal 

alloy is absent [18]. Much of the porosity is simply air entrapped as the metals move 

through the shot sleeve and runner as shown in Figure 2.2. Air will enter the die 

cavity unless it is removed using a vacuum technique. When such air or gas 

entrapment is sufficiently large and is located just under the skin of the casting, 

blistering may result. The air or gas in the void is subjected to the metal injection 

pressure. In the case of HPDC, the solidification of metals takes place in seconds, 

hence, air or gas entrapped cannot escape out of the vent in the die in that time [16]. 
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Figure 2.2 Stages of High Pressure Die Casting Process [19] 

Surface reactions sometimes cause sub-surface porosity or pin holes. In 

aluminium alloys containing more than 1% magnesium, a reaction tends to occur 

between the magnesium of the alloy and the water vapour of the mould [6]: 

 

Mg + H20  = MgO + H2 (gas)               (2.1) 

 

Gas porosity defects in aluminium alloy castings generally appear as rounded 

pores associated with gas, or as elongated inter-dendritic pores referred to as 

shrinkage porosity [13]. Common causes of excessive air porosity are turbulence in 

the shot sleeve and in the runner, poor flow patterns in the gating system, low metal 

temperature, blocked vents and overflows and excessive lubricants. 
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Figure 2.3 illustrates the shape of a typical gas porosity defect. They are 

formed by gas entrapped in the metal during solidification. The gas may be H2 gas 

coming out of the solution within Aluminium, at the time of solidification or 

nitrogen, steam and air. Previous research work has shown that the location and area 

of porosity defects in relation to the free surface are important factors that determine 

the impact of defects on fatigue life of castings [20]. A large level of porosity, which 

is located in the centre of the casting may not effect mechanical properties or fatigue 

performance. A smaller, isolated pore near a surface may have a significant impact 

on the performance of the castings. However, according to Gupta et al.[21], the level 

of casting imperfections such as gas porosity is not always pre-determinable and they 

are generally unwanted in the end product. 

 

 

Figure 2.3 Gas Porosity in high pressure die casting part3  

The solid metal that prevents gas from escaping to the vents can also prevent 

molten metal from feeding the area during the solidification process leading to gas 

porosity. However, the shrinkage due to gas porosity defects is minimal.  

                                                 
3 Courtesy of Nissan Casting Plant Australia Pty Ltd 
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Before the problem of porosity can be addressed, it must be identified using 

an inspection system. Early detection of porosity defects can ensure that timely 

action is taken to rectify the situation [2]. Hence, casting inspection plays a vital role 

in delivering high quality castings to customers, and non-destructive testing is one of 

the tools used in casting quality inspection.  

 

 

2.2.3 Summary 

Richard et al. [1] and Taylor [6] undertook some of the earliest investigations 

in the field of metal castings. Even though their books were written nearly a half-

century ago, they remain the main sources of reference on casting. Since then, the 

problem of porosity has remained a major concern. However, no method has been 

found to eliminate sub-surface defects completely from the die casting process. The 

importance of identifying sub-surface defects has been emphasised in this section. 

Especially, the exposure of new surfaces after machining operations must not reveal 

any defects. If any sub-surface defects are exposed after machining, then castings are 

considered as rejects. Deriving from this point, it is important to understand the 

different techniques available for die castings inspection to detect sub-surface 

defects. 

2.3 NON-DESTRUCTIVE TESTING 

2.3.1 Overview  

Non-destructive testing (NDT) is the branch of engineering concerned with 

detecting flaws in materials. Flaws can affect the serviceability of the material or 

structure. Therefore, NDT is important to guarantee safe operation of the components 

and as well as quality control. NDT is also used for in-service inspection and 

condition monitoring of an operating plant and measurement of physical properties 

such as hardness and internal stress. The essential feature of NDT is that the test 
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process itself produces no deleterious effects on the material or structure under test 

[22].  

 

Raj [23] highlighted the fact that the subject of NDT has no clearly defined 

boundaries. NDT ranges from simple techniques such as visual examination of 

surfaces to well-established methods such as radiography, eddy current testing, 

ultrasonic testing and magnetic particle crack detection. NDT methods can be 

adapted to integrate with automated production processes. Sattler [24] shared a 

parallel view that the term NDT is used to describe all methods which make the 

testing possible, or inspection of a material without impairing its future usefulness. 

Further, Sattler stated that from the industrial viewpoint, the purpose of NDT is to 

determine whether a material or part would satisfactorily perform its intended 

function.  

 

 

2.3.2 Non Destructive Evaluation  

Non-destructive evaluation (NDE) is a term used often interchangeably with 

NDT. However, technically, NDE is used to describe measurements that are more 

quantitative in nature. For example, an NDE method would not only locate a defect, 

but it would also be used to determine characteristics of that defect such as its size, 

shape, and orientation. NDE may also be used to determine material properties, such 

as fracture toughness, formability, and other physical characteristics [25]. 

 

 

2.3.3 NDT&E Technologies 

At present, five major methods are available for inspecting metal casting. 

These methods are, Magnetic Particle Testing, Liquid Penetrant Testing, Ultrasonic 

Testing, Radiographic Testing, and Eddy Current Testing. Other less commonly used 

methods include Acoustic Emission and Thermal Radiation methods [4]. No single 

method can provide a complete solution for casting quality inspection. In some cases, 

a combination of NDT methods is usually used to determine the desired inspection 
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parameters [4]. Presented below is a brief literature review on the five major NDT 

methods. 

 

a. Magnetic Particle Testing 

Magnetic Particle Testing (MPT) is a NDT method that detects surface and 

near surface discontinuity in ferromagnetic materials using the principle of 

magnetisation [26]. Typically, a high current is passed through the casting, which in 

turn, establishes a magnetic field. If a discontinuity is present, it will disrupt the 

magnetic flux field from the current flow, resulting in a flux leakage. The inspection 

medium (iron particles) that is applied simultaneously with the current will be 

attracted to the areas of flux leakage and provide a visible indication of the 

discontinuity (i.e., particles will pile up over the area of the discontinuity). The 

external magnetic field indicates the internal defects. The surface condition of the 

component plays a vital role in MPT since it affects the flow of the magnetic field on 

the surface of the component. 

 

The major advantage of this test method is that it is quick and simple in 

principle and application. It is very sensitive to the detection of very minute (less 

than 1 mm) shallow surface cracks. On the other hand, it has the disadvantage of 

being applicable only to ferrous materials. Furthermore, care is required to avoid 

burning of the casting surface at the points of electrical contact [27]. 

 

b. Liquid Penetrant Testing 

Liquid Penetrant Testing (LPT) can detect surface discontinuity in both 

ferrous and non-ferrous castings [4]. This method uses the principle of capillary 

action which is the ability of a liquid to travel to or be drawn into a surface opening. 

The most critical step in this penetrant process is the pre-cleaning of the casting. 

Because the penetrant physically enters the discontinuity, the opening of the 

discontinuity must be free of any material that could inhibit the movement of 

penetrant. 
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This method is highly sensitive to fine, tight surface discontinuities such as 

cracks and cold shut. It is also effective in the detection of rounded indications, such 

as porosity. The discontinuity indications are viewed on the casting surface. The 

limitation of LPT is that the discontinuity must be open to the inspection surface. 

Based on the investigations carried out by Glatz [28], LPT is not always effective in 

locating small surface flaws in certain complex shaped parts. Further, the LPT 

method cannot be used detect sub-surface discontinuities. 

 

c. Ultrasonic Testing  

Ultrasonic testing (UT) methods use high frequency sound waves to detect 

surface and sub-surface discontinuities in both ferrous and non-ferrous castings [5]. 

UT can also be used to gauge the thickness of a casting. Because UT enables the 

investigation of the cross-sectional area of a casting, it is considered a volumetric 

inspection method.  

 

UT has several advantages in both product quality control and in-service 

inspection for locating and characterising sub-surface defects and evaluating the 

mechanical properties [29]. These advantages include high probability of defect 

detection, less cost for automation and less hazardous to environment. However, 

there are problems in identifying defects such as porosity, inclusions and cracks in 

castings [30]. The major limitations are due to the sensitivity of ultrasonic inspection 

with respect to the grain size and surface roughness of the castings [31]. Detailed 

background information on ultrasonic inspection is presented in Chapter 3. 

  

d. Radiographic Testing 

Radiographic Testing (RT) is a method that uses X-ray or gamma energy to 

pass ionising radiation through a casting to reveal internal discontinuities on a film 

medium [32]. Gamma rays are ionising radiations which are the product of nuclear 

disintegration from a radioactive isotope. The RT method can be used with both 

ferrous and non-ferrous castings. This inspection technique utilises the ionising 

radiation to penetrate the cross-sectional area of a casting and expose a piece of 

radiographic film. When discontinuities such as cracks, gas and shrinkage porosity 
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are present in a casting, less radiation is absorbed and more radiation reaches the 

film. This increased film exposure to the radiation ultimately produces an image of 

the discontinuity on film. 

 

Advances in computer technology have lead to a CRT screen replacing the 

film. With this technology internal discontinuities are revealed on the screen in real 

time.  An advantage of radiography is that it can provide a permanent record of the 

casting quality after inspection. The orientation of the radiation source, the object 

and the film may cause distortion in the projected discontinuity image. The 

inspection requires access to both sides and surfaces of the casting. The discontinuity 

in the casting must be parallel to the radiation beam for the best possible detection. 

The disadvantage of this technique is that the casting thickness and density limit the 

possible range of inspection [31,32].  

 

e. Eddy Current Testing  

Eddy Current Testing (ECT) utilises an induced low-energy electrical current 

in conductive ferrous or non-ferrous materials. The alternating current creates an 

expanding and collapsing magnetic field in a longitudinal direction across coil 

windings. The magnetic flux is created, extending into the casting which in turn 

induces the flow of the eddy current. When a discontinuity is present, it affects the 

characteristics of the magnetic field associated with the eddy current, which then 

alters the interaction between the two magnetic fields detected at the surface. This 

altered interaction is displayed on the eddy current instrument display. 

 

This inspection method is suitable for the detection of surface flaws or 

material changes that may not be detected by other NDT inspection methods [24]. A 

major limitation of the ECT inspection method is that it requires considerable 

knowledge and experience to properly establish inspection techniques and interpret 

the results. A further disadvantage is that it is only suitable for electrically 

conductive materials.  

 



 
CHAPTER 2. LITERATURE REVIEW 

 

27 

2.3.4 Flaw Detection in Castings 

In the case of castings, flaw detection is almost exclusively concerned with 

manufacturing defects rather than with in-service inspection. The requirement for the 

quality inspection of castings is dictated by the end use of the casting. Each industry 

has specifications and acceptance criteria developed around each type of product 

manufactured. The testing of castings is complicated due to several variables such as 

the surface condition of the metal which are discussed later in this chapter. 

 

In an investigative study, Barberis [33] found that NDT had been used in 

casting industries for more than 50 years. This was mainly due to the customers of 

die casting manufacturers, who expected castings to be supplied to a defined quality 

standard. Conformity to this standard usually depends on the quality of the inspection 

system. NDT of castings provides quality assurance for end products delivered to 

customers, and involves a combination of physical inspection methods that can be 

used to determine the integrity of a casting without causing physical damage to it. 

 

Bowland [34] provided an extensive analysis of NDT inspection methods for 

castings in his research work. The importance of quality assurance and training was 

emphasised for each of the inspection methods used in the casting industry. Liquid 

penetrant, magnetic particle and visual test techniques have been used extensively for 

surface defect detection [4]. Radiography and ultrasonic techniques have been used 

for sub-surface defect detection [33,35]. In this section, emphasis has been given to 

inspection techniques that are relevant for sub-surface defect detection. 

 

Leak testing of castings usually involves some form of wet bubble testing, 

often carried out in hostile environments [36]. Such testing usually has the relatively 

simple goal of determining whether a part leaks or not. The problem with using a 

leak test method to find a leak in a casting is the inability to identify the type and 

location of a defect. Heine [37] noted that evaluation of leak rates is qualitative, and 

subjective, and is always compared to standardised test procedures. Hence, tests 

should be conducted, beginning with leak tests and then progressing to more 

sensitive methods to obtain quantitative results. 
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Radiography has been the preferred method for testing castings. But 

radiography has inherent dangers because the radiation produced can have a 

detrimental effect on operators if they are exposed to it. The other problem with the 

X-ray image or radiography approach is related to the reliance on human operators to 

interpret the images produced. Human error in identifying defects in die castings may 

occur due to operator fatigue, distraction and lack of sufficient experience. There 

may be circumstances where orienting a casting properly for radiography is 

impossible due to shape and thickness constraints. In such cases, radiography is not 

useful in the inspection of castings. However, digital radioscopy has experienced a 

significant upturn in the past few years as noted by Hanke [38] due to better digital 

images plus the development of increasingly powerful and complex algorithms for 

image processing. 

 

Even though radiography is the generally accepted test method for castings, 

ultrasonic inspection can also be used due to its low environmental impact and its 

effectiveness with respect to near-surface defect detection and location [35]. 

However, castings do present a problem in relation to ultrasonic inspection, the 

parameters affecting propagation of ultrasound in the die castings (test specimens) 

are discussed in Section 2.5. The surface roughness of die castings and their 

dimensional variations scatter the sound pulse and make discontinuities difficult to 

detect. Some of the problematic areas of ultrasonic NDT such as surface roughness 

and grain size variation need to be addressed as suggested by Rickards and Wickens 

[3]. Lavender [39] has discussed the effects of surface conditions on performance of 

different methods of NDT. Apart from these problems, the ultrasonic inspection 

method also requires a vast amount of knowledge and experience to fully establish an 

inspection methodology and interpret results4. 

 

Lavender and Wright [40] discussed some of the advantages of ultrasonic 

inspection over radiography, including the cost factor. According to their findings, 

ultrasonic inspection has a large cost benefit ratio compared to radiography due to 

                                                 
4 A review of the influence of surface roughness and grain size on ultrasonic inspection is 

presented in Sections 2.5.3 and 2.5.4 respectively.  
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the ease of automation. Recently, Kleven and Blair [41] presented a comparison of 

ultrasonic and radiography inspection techniques for the testing of castings (Table 

2.1). They concluded that a reasonable balance has to be maintained in the inspection 

of castings. When the defects are oriented parallel to the scan surface, ultrasonic 

inspection is suitable, and if oriented perpendicular to the inspection surface then X-

ray inspection is suitable. In some cases, a combination of both ultrasonic and 

radiography has to be used. This also confirms the views of Long [4], who concluded 

that a single inspection technique does not provide a complete solution for casting 

inspection. Another factor indicated in Table 2.1 is that near-surface detection and 

surface roughness are not easily accommodated with ultrasonic inspection.  

 

 Characteristic Ultrasonic Radiography 
 Equipment cost + - 
 Operating training - + 
 Near surface detection - + 
 Portability + - 
 Large part size = - 
 Rough surface - = 
 Need for calibration - + 
 Part attenuation/grains - = 

 Intricacy of part 
geometry - = 

 Limited plant space + - 

 Discontinuity 
orientation =* =** 

 Permanent record - + 

- not advantageous 
+ Advantageous 
= moderate advantageous 
* if oriented parallel to scan surface (planar or crack like) 

** if oriented perpendicular to part surface/radiation beam (planar or 
crack like) 

Table 2.1 Comparison of ultrasonic and radiography inspection of castings [41] 
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2.3.5 Summary 

The future of the casting industry depends on castings meeting the 

requirements of customers in terms of quality and performance. The ability to offer 

these guarantees will increasingly rest on casting manufacturers, who can provide 

NDT&E facilities to assess the quality of the castings. Additionally, the time spent 

on, and investment in, NDT&E by casting manufacturers is wasted if the test 

procedures are not reliable. The two common NDT technologies available for sub-

surface defect detection are X-ray and ultrasonic inspection systems. It is important 

to recognise the advantages, and eliminate the problems associated with NDT 

methods. In ultrasonic inspection, major problems are associated with surface 

roughness, grain size, geometries of products being inspected, and lack of 

experienced operators. Flaw detection in castings with ultrasonic inspection is also 

difficult when there is a requirement to identify near-surface defects (Table 2.1). 

Hence, the importance of this research work is in understanding the limitations of 

ultrasonic testing particularly in its use in the inspection of castings to locate defects 

in the vicinity of rough surfaces.  

2.4 ULTRASONIC INSPECTION OF CASTINGS 

Ultrasonic NDT is useful in the inspection of castings of simple design where 

the echo pattern can be reliably interpreted [31]. The highest degree of reliability in 

ultrasonic testing of castings is obtained when the influence of test specimen 

variables and their effects are properly understood. The literature review documented 

in this section mainly focuses on the ultrasonic inspection of castings and the 

different factors influencing inspection of castings. 

 

The application of ultrasound has a long history with respect to casting 

inspection in the foundry industries. During the period from 1940 to 1950, the use of 

ultrasound technology in examining castings was influenced by several difficulties 

[42]. This was mainly due to the many variables associated with the inspected 
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materials such as iron and steel. These variables include the microstructure 

characteristics, surface roughness, and exterior shape that affect the reliability of 

ultrasound testing. As a result, the use of ultrasound technology on as-cast products 

was not widely accepted at this time. 

 

The use of aluminium castings in recent years has increased dramatically, 

emerging in applications such as the nuclear, aerospace and automotive industries. 

As a consequence, there has been much research to increase the reliability of 

ultrasonic technology in the testing of aluminium die castings. A recent literature 

review indicated that ultrasonic techniques are among the most popular NDT 

methods used for product quality evaluation [43].  

 

Between 1985 and 1987, Kuppermar et al. [44,45] investigated the effect of 

structure orientation on ultrasound propagation. They also examined changes in 

ultrasound propagation speed and beam skewing, with respect to changes in material 

properties. Similarly, Boveyron et al. [46] examined the different structure types of 

material (columnar, fine and coarse) as well as changes in columnar angles and their 

effect on ultrasound propagation and attenuation in stainless steel casting ingot. It 

was found that material properties had an impact on ultrasonic inspection. 

 

Kapranos et al. [47] presented results of X-rays and ultrasonic examination of 

porosity and depth of major voids in thixocasting products. They stated that NDE 

results correlated well with destructive microscopic analysis. Similarly, Yao and Liu 

[48] detected the porosity distribution in tensile test samples using the ultrasonic 

method to reveal the fracture zones.  

 

Nelligan [49] demonstrated that ultrasonic flaw detectors can be used to 

detect internal flaws in castings. However, it was found that for shop floor 

applications, the operator should be experienced and have reference standards for 

reliable interpretation of the ultrasound echoes. Nelligan’s research focused mainly 

on the thickness measurement of castings and material analysis. However, this 

research also investigated flaw detection of castings and concluded that defect 
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detection could be automated when the inspected parts had simple casting geometries 

and smooth surface finish.  

 

This section of the literature on the ultrasonic inspection of castings has 

identified the challenges in carrying out inspection on castings with rough surface 

and non-uniform grain size [50]. The following section addresses the factors that 

affect the ultrasonic inspection of castings. 

2.5 FACTORS AFFECTING ULTRASONIC INSPECTION 

2.5.1 Overview 

The variations in a typical aluminium alloy die casting relevant to ultrasonic 

inspection are associated with factors such as entry surface, part geometry and 

internal structure [51]. In addition, reflective surfaces (i.e. back surface of the 

casting) also contribute significantly to the effectiveness of the ultrasonic technique. 

Effectiveness of ultrasonic testing depends on a number of parameters, which may be 

divided into four groups: ultrasonic instrument performance; transducer 

performance; material variation; and defect variation [52]. A large number of studies 

have been undertaken in an attempt to understand the effect of roughness, grain 

structure and geometry on ultrasonic signals [53-56]. The aim of this section is to 

provide an overview of the various findings and developments in ultrasonic 

inspection systems in relation to detecting porosity defects in aluminium die castings. 

 

 

2.5.2 Factors Affecting Velocity 

Temperature has a direct effect on the velocity of sound in materials [25]. An 

increase in temperature results in an increase in velocity of ultrasound.  However, 

this would not be the same with all metals and alloys [25]. If the material being 

examined is at a considerably higher temperature than the surrounding air, accurate 
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determination of the pulse-echo beam path can become more complicated. Brunk 

[57] stated that the effects of room temperature and immersion water temperature 

need further investigation while studying the influence of ambient temperature 

changes on ultrasonic immersion testing of steel parts. 

 

Ambardar et al. [58] investigated the effects of grain size and porosity levels 

on the velocity of ultrasound. Their work highlighted the importance of achieving 

high accuracy in velocity measurement in order to gauge variations in material 

properties. Ambardar et al. [58] used the time delay between two back wall echo 

signals to measure the velocity of ultrasound and their approach yielded reliable and 

reproducible results even with coarse grained materials. One important finding in 

their work was that the velocity of ultrasound was independent of porosity size. Their 

work also highlighted the importance of tracking the changes in velocity of 

ultrasound with grain size variations in aluminium alloy castings.  

 

 

2.5.3 Surface Roughness 

The condition of the surface through which a sound beam enters a material is 

an important factor in ultrasonic NDT. Detectability of discontinuities such as cracks, 

voids and porosities is greatly affected by the extent of roughness. Increased 

roughness reduces the transmitted energy of the sound beam and this, in turn, reduces 

the amplitude of the received signal [59], leading to difficultly in measuring the size 

of the discontinuity. The measurement of back wall echo amplitude provides a better 

understanding of the attenuation due to the material characteristics [59]. Appreciation 

of the problem has led to a large number of studies investigating various aspects of 

the material characteristics on ultrasonic test signals [60]. From the literature, it is 

evident that the results obtained were based on theoretical or model based studies 

[61].  

 

Blessing et al. [54] carried out ultrasonic inspection on the steel samples at a 

frequency range of 1 to 20 MHz to study the effects of surface roughness on the 

ultrasonic signal echo amplitude. They observed multiple back wall echoes (a total of 
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four) due to multiple reflections within the steel samples with surface roughness up 

to 23 μm RRMS value. The effect of surface roughness was minimal up to 23 μm RRMS 

value as observed by Blessing et al. [54] in their research work at the low frequency 

range compared to the high frequency range such as 15 and 20 MHz as shown in 

Figure 2.4. 

 

 
Figure 2.4 Fourth to first back wall echo amplitude ratio versus sample roughness at 

three discrete frequencies [54] 

 

Thavasimuthu et al. [60] investigated the effect of front surface roughness on 

the ultrasonic signal amplitude in samples with various discontinuities. The effect of 

rough surface interaction with contact testing and effects of backscattering within the 

samples have been investigated using specimens with simulated surface roughness. 

The scattered signals that are directed back to the transducer are known as 

backscattered signals [60].  

 

Bridge and Tahir [61,62] studied the scattering of ultrasound from 

periodically and randomly rough surfaces with the centre line average surface 

roughness ranging from 0.1 to 14 µm using 4-30 MHz frequency probes. Their 
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results indicated that a periodically rough surface acts like a diffraction grating and a 

random rough surface can be accommodated by a Rayleigh scattering model. They 

also stated that the distortion effect was more pronounced with random surfaces at 

the liquid-solid interface in ultrasonic immersion testing. Bridge and Tahir [61] 

concluded that there is a need to study the effect of surface roughness on ultrasonic 

immersion testing in detail. 

 

Rose et al. [63] used an ultrasonic NDT method to identify gas porosity 

defects in aluminium alloy castings. They also investigated the effects of surface 

roughness on ultrasonic signals from the castings. Their study concentrated on 

quantitative assessment of gas porosity defects in die casting aluminium materials of 

plate-like geometries. Similarly, Adler et al. [64] investigated porosity defects in 

aluminium cast materials, and used volumetric analysis to identify gas porosity 

defects. They studied the effect of backscatter in their work on the ultrasonic 

inspection of aluminium cast materials. Their theoretical analysis of the attenuation 

ratio indicated that it was independent of frequency or surface roughness up to 40 μm 

root mean square value (i.e., equal to 36 μm Ra). They also found that the transmitted 

wave was attenuated in a similar way to the reflected wave at the water-aluminium 

interface during ultrasonic immersion testing. 

 

Ambardar et al. [65] also investigated the effects of surface roughness and 

grain structure variations on ultrasonic signals obtained from sample aluminium die 

casting blocks using the backscattering of ultrasonic sound method. In these 

investigations, the arithmetic mean surface roughness (Ra) values were in the region 

of 50 μm. The results of their investigation lead to the conclusion that an increase in 

surface roughness decreased the back wall echo component of the ultrasonic signal. 

 

In the late 1980s Onozawa et al. [66] constructed a multi-transducer (probe) 

head to detect near-surface flaws in castings with rough surfaces. Even though they 

stated that material with surface roughness of more than 50 μm (Ra) was inspected 

with the new probe, no detailed descriptions were provided on the effect of surface 

roughness on the performance of ultrasonic contact inspection. The work mostly 
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concentrated on the application of the multi-transducer head on cast iron castings to 

determine the capability of detecting flaws lying close to the surface. 

 

Bilgen [67] in his doctoral research work investigated the effect of surface 

roughness on ultrasonic immersion testing in detail using a theoretical model. Bilgen 

[67] used a brass part for inspection with a surface roughness variation value 

between 1 and 500 μm root mean square (RMS) values, while the surface correlation 

length varied from 100 μm to several millimetres. Figure 2.5 compares the 

normalised variance Q(z) of the signal for four different surface roughness in RMS 

heights (hRMS) from 12.5 μm to 50 μm for a varying focus distance (Z) of the 

ultrasonic signal within the brass castings. The normalised variance Q(z) was used to 

determine the variance in the backscattered signal as a function of depth in the 

material under inspection. The variance in the backscattered signal indicates the 

backscattered power received from the defects located at a particular depth (z). This 

variance value was then used to determine the signal variation due to change in 

surface roughness compared to the smooth surface. Figure 2.5 shows the dependence 

of Q(z) on the surface roughness, correlation length, frequency and focal length. It 

was found that the signal peak was larger for high surface roughness values and 

decayed faster than for the smaller surface roughness parts. 

 

As illustrated in Figure 2.5, there was a pronounced dip in Q(z) value near the 

focal depth (4 cm). This dip in Q(z) was observed only with the focused probes and 

not with the unfocused probes when similar experiments were carried out [67]. 

According to Bilgen [67], only the coherent part of the ultrasonic wave field 

participates in focusing and it dominates the backscattered signal. Hence, in the focal 

region, the signal-to-noise ratio is relatively unaffected by surface roughness, as the 

signal and noise are altered in the same manner. However, for a surface roughness 

above 25 μm, the coherent part of the ultrasonic beam becomes negligible even in 

the focal area and a high loss in the signal-to-noise ratio results [67]. The large 

variation of Q(z) was observed for surface roughness greater than 25 μm illustrated 

in Figure 2.5. Focusing changes the backscattered signal and consequently attention 

must be given to select a suitable ultrasonic focus probe in order to accommodate the 

surface roughness variation. 
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Figure 2.5 Comparison of the normalised variance Q(z) of the signal for four 

different RMS heights: solid line 12.5 μm , dotted lines 25 μm, dashed line 37.5 

μm and dash-dotted line 50 μm with f = 10 MHz [67] 

The casting surface roughness depends on the die casting process parameters 

(die temperature, cooling rate, etc.,) and the nature of the die surface. The surface 

roughness of the casting increased, as the die surface wear increased. It had random 

textures and there was no sequence to the peaks and valleys or to its height or depth 

[68]. It was found that, there was no uniform surface roughness value for castings 

manufactured from the same die casting machine with the same die or in the same 

batch [2].  

 

A further review of the literature on the effects of surface roughness on 

ultrasonic signals revealed that no detailed investigation of castings with a roughness 

greater than 50 μm (Ra) has been carried out. The review of literature also indicated 

that ultrasonic immersion testing of aluminium die castings with varying surface 

roughness has not been adequately investigated. However, a limited number of 

studies [69,70] have been made to relate ultrasonic parameters to the micro structural 

characteristics and engineering properties of materials. Some investigations have also 

focused on surface roughness induced changes in ultrasound signals. Most of the 
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work with respect to surface roughness was carried out on surfaces with roughness 

(Ra) values around 50 μm. 

 

In this particular research, it was important to inspect the casting in the as-

cast state (with surface roughness between 50 μm and 150 μm) because further 

processing (i.e., machining) weakens the justification for a non-destructive testing 

application (Section 1.3). Hence, there is a need to determine the limitations of 

ultrasonic inspection of castings with surface roughness values greater than 50 μm. 

 

 

2.5.4 Grain Size Variations 

Metallurgical characteristics of castings have a strong influence on the 

performance of ultrasonic inspection. A large grain size relative to the wavelength of 

ultrasound gives rise to high background noise and high attenuation [29]. Scattering 

of ultrasound also occurs due to presence of large grain size leading to a low signal 

to noise ratio. Ambardar et al. [71] investigated the effect of porosity defects, defect 

size and grain size on ultrasonic signal attenuation. In their investigation, an Al-4.5% 

Cu alloy casting was used to determine an attenuation coefficient, which was 

influenced by porosity defects, defect size, grain size and probe frequency. 

Attenuation is inferred from a rate of decay of multiple echoes and attenuation 

coefficient is defined as the rate of reduction of average ultrasonic signal intensity 

with respect to distance along a transmission path [22]. The attenuation coefficient 

increases with increase in grain size, and decreases with decrease in porosity 

diameter and frequency. Since the attenuation is frequency dependent, a single 

attenuation coefficient only applies to a single frequency. It should be emphasised 

that Ambardar et al. [71] work was specifically on Al-Cu alloy and it would not be 

necessarily valid for other alloys. They concluded that a major factor in ultrasonic 

inspection was establishing a relationship between material grain structure and a 

suitable probe frequency. Howard and Enzukewich [72] carried out a similar 

research study on the effects of grain size variation on alloy steel inspection. The 

results of this investigation revealed that heat treatment of the materials under 

inspection lead to less attenuation of ultrasonic signals. However, they also stated 
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that this procedure would not suit all alloy metals due to the variations in the effect 

of the heat treatment process. 

 

Adverse signal-to-noise ratio is one of the problems associated with 

ultrasonic inspection of aluminium castings. Inhomogeneous casting materials lead 

to a varying level of background noise arising from scattering at grain boundaries. 

Hence, a varying level of grain size in the material would result in varying level of 

scattering. One way to alleviate this problem involves the use of focused transducers 

– a high intensity, narrow beam will interact with a defect and provide a better signal 

to noise ratio when compared to a less intense and unfocused beam. Ogilvy [73] 

applied a theoretical model in the study of focused beam behavior in austenitic weld 

materials, and observed that focused transducers contribute to increasing the signal-

to-noise ratio in ultrasonic inspection of austenitic weld materials. Stepinski and Wu 

[74] carried out a similar investigation on copper components. They evaluated 

attenuation coefficients for a number of copper specimens covering a certain range of 

grain sizes. There was a clear correlation between grain size variation in specimens 

and the attenuation due to scattering [74]. It may be argued, that a solution to this 

problem would be to simply reduce the grain size of castings such that higher 

frequency ultrasound may be used. Stepinski and Wu [74] stated, however, that the 

grain structure has a strong bearing on a casting’s mechanical properties and 

performance and should be not be altered in the casting process. Hence, a thorough 

investigation of castings with varying grain structure is necessary in determining the 

effectiveness of ultrasonic inspection. 

 

 

2.5.5 Mode Conversion within Test Specimen 

Ultrasonic beams are reflected when they encounter a medium of a different 

acoustic impedance5. The surface at which this reflection occurs is called an 

interface. The amount of reflection depends on the acoustic impedance ratio between 

                                                 
5 Acoustic impedance Z = ρv where ρ is the material density and v is the ultrasound velocity 

in the material [22] 
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the two media involved [22]. Mode conversion (the splitting of incident ultrasonic 

wave into longitudinal and shear components) takes place when an ultrasonic beam 

contacts the interface between two different media at an angle other than 90° to the 

surface. The transmitted ultrasonic waves can produce two refracted beams i.e., 

longitudinal and shear waves. Snell’s law (Equation 2.2) can be used to determine 

the angular relationships between the incident and refracted beams when two 

different mediums are involved.  

 

 Sin φ1 / Sin φ2 = V1 /V2                                         (2.2)                                 

 

where φ1 = Incident angle of the ultrasonic beam in medium 1, 

          φ2 = Refracted angle of the ultrasonic beam in medium 2,   

         V1 = Velocity of ultrasound in medium 1 and  

        V2 = Velocity of ultrasound in medium 2 (either longitudinal or shear 

wave) 

 

The refracted shear beam angle will be half the longitudinal beam angle, as 

the velocity of the shear wave is about half the velocity of the longitudinal wave [5]. 

The mode conversion has important implications for this research due to the 

requirement for ultrasonic immersion testing and presence of significant surface 

roughness in the castings. 

 

 

2.5.6 Orientation and Depth of Discontinuity 

Ultrasonic inspection of castings has limitations with regard to detection of 

discontinuities based on orientation, size and depth. Cracks and planar discontinuities 

must be oriented approximately perpendicular to the ultrasound waves. The return 

signal from the defect is influenced to a large extent by size and orientation of the 

defect. Few studies have dealt with the estimation of the combined effects of porosity 

and grain size on the attenuation coefficient [71]. The variation in the size of the 

defect can be detected by measuring the change in attenuation coefficient [71].  
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Thavasimuthu et al. [75] investigated the problems of mis-oriented defects 

(defects which are not exactly perpendicular to ultrasonic wave propagation) using 

angle beam inspection. The results of this research indicated that it was difficult to 

detect mis-oriented defects and the effectiveness of detection depended on the actual 

defect type. In the phenomenon of shrinkage, molten metal shrinks while cooling, 

leading to the formation of cavities within the solidified material. Crack formation 

then takes place due to the thermal stress introduced into the molten metal. 

Thavasimuthu et al. [75] have concluded that the selection of equipment and probe 

are dependent on the type of metal and defects to be inspected.  

 

An international round robin test carried out by Engl et al. [76], indicated 

100% detectability of defects ranging in size from 4 to 5 mm, only when a proper 

choice of inspection parameters was guaranteed. The effect of variation in the 

inspection parameters such as frequency, transducer size and incidence angles were 

considered for defect detection. Their work did not focus on rough surface castings 

or ultrasonic immersion testing. However, the investigation emphasised the 

importance of proper selection of inspection parameters and also the need for further 

work to determine the influence of the inspection parameters on ultrasonic based 

inspection of aluminium die castings. 

 

 

2.5.7 Summary 

In this Section 2.5, a review of previous literature investigating the problems 

encountered during ultrasonic inspection of die casting parts was presented. The 

importance of determining appropriate inspection parameters such as ultrasonic 

frequency and actual velocity of ultrasound within the material for the inspection of 

selected aluminium parts was emphasised. The literature review also identified the 

significance of the back wall echo in ultrasonic casting inspection, as it provides a 

measure of ultrasonic signal attenuation within the parts. However, it was found that 

there was uncertainty with respect to determining whether the ultrasonic signal loss 

was due to scattering from a discontinuity, non-uniform grain boundaries or a rough 

surface.  
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2.6 NEED FOR RELIABLE CASTING DEFECT DETECTION  

A variety of defects can arise in die cast products during the manufacturing 

process. The impact of the defects on performance depends on their location, size 

and operational conditions. Hence, their classification holds much significance in 

determining the overall casting quality. The term ‘imperfection’ or ‘defect’ refers to 

any flaw, fault or irregularity in the structure of the material that may cause weakness 

or failure in the functioning of the product or system with which it is associated [77]. 

 

Defects are usually related to the method by which a component is produced. 

Manufacturing defects of castings are classified as rough or smooth cracks, porosity, 

inclusions or laminations. They may also be classified as planar wherein they have 

length and breadth but negligible depth, and non-planar or volumetric when they 

have length, breadth and depth [78]. Gas porosity type defects are considered to be 

volumetric, as shown in Figure 2.3.  

 

According to Rajagopalan et al. [79], the main tasks of ultrasonic inspection 

of castings are: 

• Reliable detection of all defects 

• Location and classification 

• Sizing and characterisation of defects, and 

• Ease of interpretation of results. 

 

Thavasimuthu et al. [80] observed that flaw detection was  more difficult to 

address with human operators when associated with complicated geometries of the 

part and noisy or incomplete data. Recent advances in computing power enable 

NDT&E to be used for such practical applications as detecting and evaluating defects 

in casting structures. The use of computers to perform part of the analysis and 

classification process should result in improvement of overall testing performance 

[81]. According to Gayer et al. [82], the separation of relevant from non-relevant 

information and defect characterisation in manual testing are highly dependent on the 

examiner for the radiography testing application. These conclusions concur with 

those of  Thavasimuthu et al. [80] in relation to manual ultrasonic inspection. 
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In order to remove the operator from the decision making area, Carter [83] 

used artificial intelligence tools for the purpose of automating the interpretation of 

signals received from the ultrasonic equipment. Among these tools, artificial neural 

networks have been recognised as being very efficient in the area of pattern 

recognition. 

 

One of the problems associated with ultrasonic inspection is that the defect 

echo may not appear as an isolated response but may instead be surrounded by 

geometric echoes, and the defect may be a small addition to a large geometric echo. 

Also, movement of the transducer during scanning can change the timing of the 

echoes for both defect and geometric image patterns, which may lead to further 

inspection difficulties. To resolve some of these issues Sykes [84] used motorised 

probe heads for rapid and repeatable inspection of complex components with 

minimum human intervention. This system could also eliminate the human error in 

handling the ultrasonic probes. Atkinson et al. [85] also used a similar type of semi-

automated inspection system for an austenitic casting and weld inspection 

application. Their approach brought together sophisticated data collection and 

display methods, signal processing and special scanning techniques in order to 

improve the inspection capability for coarse grained materials. Atkinson et al. [85] 

demonstrated useful improvements in inspection capability with their approach. They 

used the time-of-flight-diffraction6 (TOFD) method and signal-to-noise ratio 

methods to identify defects.  

 

Automation of the ultrasonic inspection process is highly desirable as 

overhead cost represents a significant proportion of inspection costs. Manual 

inspection with single-element probes is widely used because it can be adapted to the 

great range of materials and geometries encountered. The probes are used to inspect 

a point on the surface and are not well suited to area coverage, which is time-

consuming and costly. Automated mechanical scanning can increase the inspection 

speed, but this is complex, costly and inflexible [84]. Hence, attention has to be 

                                                 
6 According to Silk [147], TOFD method relies on the diffraction of ultrasonic energies from 

'corners' and 'ends' of internal structures (primarily defects) in a component being tested 
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given to the development of low cost, flexible inspection methodologies and 

techniques that can be easily automated. 

2.7 SIGNAL INTERPRETATION 

2.7.1 Overview 

The complexity of the inspection task and the common occurrence of large 

production runs increase the demand for signal processing analysis of ultrasonic 

signals. This section aims to highlight the need for signal analysis, and describes the 

different methods used in the automation of defect detection and signal classification 

in various applications. Furthermore, a review of the overall application of Artificial 

Intelligence (AI) and signal processing techniques is presented in relation to 

ultrasonic inspection.  

 

 

2.7.2 Processing NDT data 

Most NDT data has to be stored and displayed for assessment purposes. The 

basic requirements of this process are to: 

• Extract the necessary information and store it in a suitable permanent form, 

and 

• Display the information in a manner in which it can be easily accessed. 

The techniques used for this purpose have typically been based on AI, Expert 

Systems and Neural Networks [83,86]. 

 

On the signal processing side, it appears that artificial intelligence technology 

is now sufficiently mature to be used on the shop floor. In this respect, sensor fusion, 

signal knowledge representation, expert systems, neural networks, fuzzy logic and 

computer vision are seen more frequently in NDT&E applications [86-89]. 
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2.7.3 Signal Pre-Processing 

2.7.3.1 Overview 

Signal pre-processing is the first step in ultrasonic signal interpretation. 

Neural network training can be made more efficient if certain pre-processing steps 

are performed on the network input signals. Suppose that a non-stationary time series 

signal consisting of a transient component (e.g., target signal) superimposed on a 

signal-dependent interference (e.g., cluster) are to be classified. An neural network 

can be applied to the received signal directly, thereby forcing the neural network to 

discover the inherent features characterising the signals and then performing the 

desired detection. A practical drawback of this simplistic approach, particularly in 

the context of large-scale complex problems such as one presented in this thesis is 

that it can be clearly time-consuming and difficult. There is a need for signal pre-

processing to be applied on the input signals to achieve better classification. Three 

commonly used types of signal pre-processing methods are discussed briefly in this 

section. 

 

2.7.3.2 Fast Fourier Transform 

The Fast Fourier Transform (FFT) algorithm is used for the conversion of 

time domain signals into frequency domain representations of signals [90]. 

According to Brigham [90], the FFT is a standard pre-processing technique used in 

digital image processing. The idea is to expand the signals in a Fourier series and use 

a limited number of Fourier coefficients to reduce the signal noise. The filtering or 

reducing of signal noise is carried out by highlighting particular frequency 

components that are associated with defect signals. To take the Fourier transform of 

a waveform is to decompose or separate the waveform into a sum of sinusoids of 

different frequencies [90]. The formula of the Fourier Transform of a continuous 

waveform y(t) is [91]: 
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Where f is the frequency of the signal and Y (f) is the Fourier representation 

of the original time domain signal )(ty . In this application, however, the acquired 

signals are not continuous because they are computer real-world data (they are 

sampled), and belong to the discrete group. Therefore, it is necessary to use the 

Discrete Fourier Transform (DFT) [91], where: 
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Y (k) is the DFT of the signal as a function of the frequency k. The drawback 

of the FFT is that when transforming the signals into the frequency domain, the time 

information of the signals are lost [90].  

 

2.7.3.3 Principal Component Analysis  

Feature extraction is a process where the characteristics of the input signals 

are extracted from a dataset, serving to reduce the length of the data vector by 

eliminating redundancy in the signal, and compressing the relevant information into 

a feature vector of lower dimension [91]. In some signal processing problems, the 

dimension of the input signal vector is large but the components of the vectors are 

highly correlated. It is therefore, sometimes useful to reduce the dimension of the 

input vector. An effective procedure for performing this operation is called Principal 

Component Analysis (PCA). It involves a mathematical procedure that transforms a 

number of (possibly) correlated variables into a (smaller) number of uncorrelated 

variables called principal components. The first principal component accounts for the 

maximum variability, and each succeeding component accounts for the remaining 

maximum variability. This technique has three effects [91]:  

• It orthogonalises the components of the input vector 

• It orders the resulting orthogonal components so that the larger variations 

come first, and 

• It eliminates the least significant components in the dataset.  
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Bae et al. [92] used PCA to calculate the statistical properties of a set of 

neighbouring ultrasonic A-scan data from a weld inspection. The rationale for this 

approach was that the irregular nature of surface roughness caused the greater 

variation of signals in the rough surface region as against the smaller variation of 

reflections obtained from a smooth surface region. The PCA exploited this 

information to discriminate between defect and no-defect type signals by the process 

of eliminating the redundant echoes from the front rough surface region. The results 

of their investigation revealed that the amount of discrimination depended on the 

type of part under inspection and surface roughness level [92].  

 

2.7.3.4 Wavelet Transform and Wavelet Filters 

The Wavelet Transform (WT) provides a time-frequency representation of 

the input data. Wavelet analysis represents a windowing technique with variable 

sized regions [93]. The main advantage of wavelets is the ability to perform local 

analysis. Therefore, the WT may be used to analyse non-stationary signals, where 

frequency response varies in time. The time-domain signals are passed to various 

high-pass and low-pass filters to filter out either high frequency or low frequency 

portions of the signal. A filter is a linear time-invariant operator [94]. 

 

A filter bank is a structure that decomposes a signal into a collection of sub 

signals [94]. Depending on the application, these sub signals help to emphasis 

specific aspects of the original signal. It acts as a signal compression mechanism 

where the sub signals are used to represent the original signal. The key points in 

applying a filter bank to the input signal is that the sub signals (down-sampled) 

conveys important features (waveform, amplitude) of the original and are sufficient 

to reconstruct the original signal. The first stage of application involves two filter 

banks which necessitates the division of the signal into a low-pass and high-pass 

band, resulting in the scaling coefficients (approximate) and wavelet coefficients 

(detailed) respectively. The connection between filter banks and wavelets are that 

high-pass filters will lead to wavelet transform. The low-pass filter leads to a scaling 

function, with rescaling at each iteration [95].  
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A wavelet function can be viewed as a high-pass filter, which approximates a 

data set (a signal or time series). The result of the wavelet function is the difference 

between value calculated by the wavelet function and the actual data. The scaling 

function calculates a smoothed version of the data, which becomes the input for the 

next iteration of the wavelet function [95]. For example, if the sampled frequency 

range is 0 to 1024 Hz, the result of the wavelet function (high-pass filter) would be 

signals from 512 to 1024 Hz. The result of the scaling function (low-pass filter) 

would be signals from 0 to 511 Hz. 

 

The Continuous Wavelet Transform (CWT) is used to decompose a signal 

into wavelets of small oscillations that are highly localised in time. CWT is defined 

by [96]: 

 

∫
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Where ψ(s, p, t) is the mother wavelet with s as the scale and p the position in 

time t. The scale states how the signals are compressed. Therefore, it is possible to 

find any change in the signal by varying parameters such as scales and positions. In 

brief, this transformation just compares the function y(t) with the mother wavelet ψ 

at specific magnitudes and intervals to identify any variation in the signal [96].  

 

Serrano et al. [97] investigated the inspection of foundry pieces by applying 

wavelet transform analysis. The inspection of the pieces was carried out using 

ultrasonic sensing. They claimed that the application of the wavelet technique was 

appropriate for use in industrial environments. The treatment of the data was 

approached in two significant steps starting from the signal reflected from the 

foundry pieces. First, the Discrete Wavelet Transform (DWT) was applied to the 

ultrasonic signals to perform feature extraction. Second, a neural network was used 

on the extracted features to carry out the discrimination of the foundry pieces. The 

results of their analysis indicated that use of DWT analysis and neural networks in 

tandem was a successful approach for this type of application. 
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 In a similar manner to Serrano et al. [97], Lázaro et al. [98] applied a DWT 

for thresholding the ultrasonic signals contaminated with grain noise. They 

successfully applied DWT in this de-noising process and suppressed the grain noise. 

The selection of appropriate DWT type is a critical step in the application of the 

wavelet transform as emphasised by Lázaro et al. [98]. However, the overall 

classification performance of the system will be influenced by other selected 

parameter such as number of filter used [95].  

 

The wavelet transform is particularly effective at extracting features at 

multiple resolution levels in non-stationary ultrasonic signals [99]. Similarly, 

decomposing a signal into coefficient wavelets has also been used for signal pre-

processing as it permits the determination of a particular time-scale where the signal 

has significant energy [100]. For example, the energy at small time-scales is mostly 

due to signal noise either from grain size variation or surface roughness. Therefore, 

by removing small-scale wavelet components from the original signal, it is possible 

to reduce signal noise and compress it to a certain extent. This process reduces the 

amount of input data to the neural network without losing the critical elements of the 

input signal [101]. 

 

Abbate et al. [102] stated in their work on signal processing that one of the 

advantages of WT was the flexibility of choosing the most suitable mother wavelet 

type. However, the quality of the output obtained from WT was not only related to 

the input signal and wavelet type but also to the types of filters used in the 

transformation process. In Abbate et al.’s [102] work, the application of different 

mother wavelets resulted in different classification percentages due to different levels 

of signal processing. In their application, different mother wavelets have been 

anlaysed to select a suitable mother wavelet type [102]. 

 

In some cases, applying a single signal pre-processing technique is not 

effective. In such situations, a combination of pre-processing methods is applied to 

achieve better understanding of the signal. 
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2.7.3.5 Combination of Signal Pre-Processing Techniques 

In some applications, to achieve a better classification performance with 

neural networks, more effective feature extraction methods than single pre-

processing methods might be required. The strategy adopted in those instances would 

be to apply well known signal processing tools such as Fast Fourier Transform 

(FFT), Wavelet Transform (WT) and Principal Component Analysis (PCA) in 

various combinations to determine the best approach [103-105]. 

 

 A combination of wavelet transform and PCA has been applied for a face 

recognition application [103]. A more effective procedure is to use time-frequency 

analysis on the non-stationary received signal, and thereby transform it into a two-

dimensional component. One dimension of the component is represented by 

frequency and other by time. This procedure should help the neural network to 

identify the salient features of the received images. Such an approach may also be 

inefficient due to the highly redundant nature of the time-frequency image, as often 

the case. The redundant components of the time-frequency image may be removed 

prior to processing, thereby enhancing the efficiency of computation. To do so 

principal component analysis is applied to the time-frequency signal. In this case, 

training sets were selected from the face database for signal pre-processing [103]. 

The training sets were used to extract key features from individual input data. 

Experiments were carried out to determine the best wavelet type to use, which was a 

critical factor in the effective combination of wavelet and PCA type signal 

processing tools. A recognition success rate of more than 95% was achieved with 

this signal pre-processing approach [103]. This application demonstrated the 

feasibility of applying two different signal pre-processing methods in combination to 

achieve a better pattern recognition and classification compared to using them 

separately.  

 

Matalgah and Knopp [104] applied the combined Wavelet and Fourier 

transforms for efficient pre-processing of simulated and real data examples of non-

stationary signals obtained from applications such as underwater acoustics and 

phonocardiograms. They used WT to display the time domain signal components and 

FFT to display the spectral components of the signal. The results of their work 
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demonstrated that improvements in signal processing can be achieved with a 

combination of WT and FFT techniques as opposed to using each technique 

separately. Similarly, Wang et al. [105] combined FFT and WT for a fingerprint 

image recognition application. The application of FFT on WT increased the 

efficiency of transient signal analysis due to the special wavelet function set that 

changes its size and position on the input image. The application of FFT on the high 

frequency component of the output from WT also produced improved results when 

applied on the images obtained from the fingerprints. The feasibility of this approach 

had been demonstrated by both experimentation and computer simulation [105]. This 

application demonstrates the benefits of using the Fourier transform on the high 

spectral component of the signal obtained from the Wavelet transform. All 

applications as described in this section have illustrated the capabilities of combined 

pre-processing techniques and their advantages over single pre-processing methods 

[103-105]. 

 

 

2.7.4 Different Signal Classifying Methods 

Many approaches to processing ultrasonic signals for flaw detection have 

been reported in the literature. Lebowitz [88] described a Knowledge Based 

Inspection System (KBIS), comprised of neural classification of ultrasonic data and 

ultrasonic quantification methodologies. The intent of the KBIS program was to 

provide a tool with which an ultrasonic inspector could obtain enhanced information 

to improve the probability of correctly accepting products based on weld 

discontinuities. This system demonstrated the ability of KBIS to differentiate 

between crack, lack of fusion, slag and porosity discontinuities in welded structures. 

This system has also benefited the United States of America Navy by reducing the 

long-term cost associated with ownership of vessels [88]. A potential limitation of 

this, however, is that the knowledge base depends on the expert operators and their 

skills which would not be always available for all NDT related problems. However, 

this can be generated with understanding on the nature of the problem and material 

variations in the castings. 
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In ultrasonic NDT investigations carried out by Bilgutay et al. [106], it was 

found that one of the major limitations to effective signal processing results from 

time invariant additive noise. This noise was caused by small stationary targets such 

as grain boundaries in metals. Even targets, which were significantly larger than 

these random reflectors called clutter, were often difficult to detect due to the 

additional features of highly dense and interfering backscattering signals. The 

application of spatial compounding had not been very successful in reducing 

ultrasonic noise, especially when focused transducers were used. Spatial 

compounding is the process of combining ultrasonic images of the same region of 

interest (ROI), produced by transducers with different spatial locations [106]. 

However, a unique adaptation of the radar technique was applied to an A–Scan 

ultrasonic system for the inspection of large grained materials. This work also 

introduced a different method of signal processing of the ultrasonic signals obtained 

from focused transducers [106]. 

 

The use of Artificial Neural Networks (ANN) has become important for 

signal recognition and classification, particularly in ultrasonic inspection. Raj and 

Rajagopalan [89] investigated the benefits of AI, KBIS and ANN in different 

NDT&E problems. Their work on the use of Artificial Intelligence in NDT&E 

applications provided guidelines for selecting neural network parameters and 

determining the number of epochs that would lead to achieving the best possible 

outcomes in the processing of analog signals. They recommended the use of 

combined signal processing techniques such as Artificial Neural Networks (ANN), 

Knowledge Based Systems and Computer Aided Visualisation techniques to meet 

the requirements of NDT & E applications. Among the different AI methods there 

was a preference for use of ANN in signal classification applications. The major 

advantage of ANN was that classification and learning occurred simultaneously. 

They concluded that ANN better utilised NDT&E knowledge and data made 

available in relation to a specific problem [89]. 
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2.7.5 History of ANN Application in NDT&E   

A neural network architecture incorporating back propagation is often used 

due to its robustness. Networks used for classification have commonly as many input 

neurons as there are features, and as many output neurons as there are classes to be 

separated [48,107]. In the back propagation algorithm, which is based on a gradient 

descent method, each neuron of a layer is connected to each neuron in the previous 

and subsequent layers. A detailed description of the back propagation method is 

presented in Section 3.7.5. 

 

Neural networks loosely model the human brain’s multiple layers of 

connections, and possess the ability to approximate arbitrary mappings from sets of 

input to output patterns. Furthermore, neural networks are able to accommodate 

noise as well as deal with incomplete data [80]. A detailed description of ANN 

applications in ultrasonic NDT is presented in Section 2.7.6. 

 

In the field of ultrasonic NDT, the application of ANN has a relatively long 

history. Pattern recognition and feature extraction have been applied to ultrasonic 

NDE signals for over three decades [107]. Several researchers have investigated the 

use of neural networks in solving NDE problems, particularly classification 

problems. Mucciardi and Dau [108] pioneered the use of neural network like models 

in the early 1980s. More recently, several researchers have investigated the use of 

neural networks in solving NDE problems. Neural networks are well suited for signal 

classification in instrumentation as they have the ability to generalise and produce a 

result on the basis of incomplete data, and when properly trained will produce a 

result nearly instantaneously. There are, however, different types of neural network 

architectures available and selection of the appropriate architecture is often difficult 

[109]. 

 

Untrained neural networks produce results with accuracy above 80%, but 

when trained, results are produced with nearly 100% accuracy as demonstrated in the 

classification of eddy current NDT data [110]. Probabilistic neural networks have 

also been used in classifying eddy current NDT data [110]. The evidence indicates 

that the neural network based approach provides a cost/time efficient solution to 
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classification problems when the available amount of data is limited and the time to 

classify is constrained by the manufacturing process [110]. 

 

In order to carry out meaningful testing, it is essential to eliminate or reduce 

unwanted signal noise when using any NDT signal processing method. Rao et al. 

[111] carried out eddy current based NDT experiments on austenitic stainless steel 

welds and applied ANN for signal processing to detect defect types despite the 

presence of disturbing signal noise. They applied a systematically optimised network 

method by comparing the maximum deviation in-depth evaluation and the 

correlation coefficient in Figure 2.6. The correlation coefficient is a parameter that 

gives the quality of a least square fitting to the original eddy current NDT data [111]. 

Rao et al. [111] described a systematic procedure for selecting suitable neural 

network parameters for the particular problem in their work. Even with a small 

number of data sets (i.e., 142) for two different defect types, they were able to train 

and test their network through appropriate selection of neural network parameters. 

They have demonstrated that it was essential to obtain appropriate network 

parameters to achieve successful classification of signals with small number of input 

data (less than 200). 

 

 
Figure 2.6 Optimisation of hidden nodes in the neural network and the maximum 

deviation in depth evaluation and the correlation coefficient [111] 
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In general, ultrasonic defect classification has been carried out using a variety 

of neural network topologies in different applications [52,78,79,80,107,111-114]. It 

has been determined from the literature that a feed-forward back propagation based 

neural network structure is appropriate for ultrasonic defect classification on plate, 

welded structures and shafts as presented in Section 2.7.6.  

 

 

2.7.6 Applications of Neural Networks 

2.7.6.1 Overview 

A review of the literature has yielded several approaches used to implement 

neural networks in various inspection tasks. A few of the relevant case studies on the 

application of neural networks in the NDT field are presented in following sections.  

 

2.7.6.2 Inspection of Shafts 

Cotterill and Perceval [114] were successful in identifying the presence of 

fatigue cracks in shafts such as swing shafts, propel shafts applied in the coal 

industry using ultrasonic NDT. Manual ultrasonic inspection was used for locating 

the position of cracks along the axis of a shaft. A limitation of the technique was that 

the shape or extent of the crack was difficult to quantify with manual techniques. The 

accuracy and repeatability of test results was operator dependent. The ultrasonic 

testing operator must have a high level of skill in using the technique, and extensive 

experience on the particular shaft or pin geometry to recognise a crack indication and 

then attempt to determine the shape characteristics from the ultrasonic response. A 

further limitation with the technique lay in the storage and retrieval of ultrasonic 

data. The risk of erroneous analysis could be reduced if echoes obtained from cracks 

could be highlighted and secondary or mode converted echoes were suppressed. This 

was achieved by training artificial neural networks to discriminate between the 

different types of ultrasonic signals. Three different hidden neuron layers containing 

16, 32, and 64 neurons were applied to the particular inspection task. It was found 

that the neural network with a small hidden layer of 16 units performed better due to 
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its improved generalisation ability, while the larger hidden layer networks over-fitted 

the training data. The prediction percentage varied from 80% to 100% for the 

classification of the cracks. However, the 600 neural network training sessions took a 

considerable amount of time (more than few hours) to complete due to computation 

limitations [114].  

 

2.7.6.3 Predictions of Porosity in Al Alloy Castings 

Another application of neural networks was for the prediction of location and 

volume fraction of porosity defects in cast A356Al alloy castings [115]. Huang et al. 

[115] evaluated the application of neural networks in predicting volume fraction of 

micro porosity in Aluminium alloys. The inputs to the neural network were the 

thermal parameters obtained from computer simulations and experimentally 

determined initial hydrogen content of the melt. The location and volume fraction of 

porosity predicted by the network were found to be in agreement with experimental 

measurements. The initial hydrogen content of the melt, thermal gradient, cooling 

rate and local solidification time were the variables used as inputs to the neural 

network to determine the pore volume fraction as the output. Data from eight 

castings was used as the training set to teach the neural network. The training set 

consisted of 64 patterns, obtained from the 8 castings. An optimum number of hidden 

units were used to establish the network architecture. Huang et al.’s [115] work 

described the steps involved in developing a successful neural network technique to 

predict porosity defects in aluminium alloy castings. 

 

2.7.6.4 Classification of Weak Ultrasonic Signals 

Thavasimuthu et al. [80] applied ultrasonic contact inspection to detect flat 

bottom holes of different diameter size from 1 mm to 7 mm in casting blocks. Their 

work focused on classifying weak ultrasonic signals using feed-forward neural 

networks trained using the back propagation method. Depending on the probe 

frequencies used (2.25, 5 and 8 MHz) different features of the signal (Table 2.2) 

were applied as input to the neural networks. Typical features of a signal, such as the 

rise-time position of different peaks, peak-to-peak distance and number of peaks in a 
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specified interval were used. The weak signals containing the background grass 

(noise) signal, which camouflaged the defect signal were obtained from the 

specimens. Prominent features such as 2nd greatest peak amplitude (2nd back wall 

echo for the part) and total area under 2nd peak were used as input to the neural 

network. The neural network classifier was able to achieve an overall 98% 

classification rate for the different frequencies used in the research [80]. 

 

Number Features 

1 Greatest Peak Position  

2 Greatest Peak Amplitude 

3 2nd Greatest Peak Amplitude 

4 Total Area under 2nd Peak 

Table 2.2 Some of the prominent features applied for ultrasonic defect signal 

classification [80] 

 

2.7.7 Summary 

In general, no practical non-destructive measurement technique allows for the 

selection of sufficient useful information to allow a general and unbiased 

reconstruction of a flaw [77]. Some of the methods described in this section allow 

assumptions to be introduced into the data-processing in a known and quantifiable 

manner. The various techniques as described were examined to identify the best 

possible defect classification method for the inspection of sub-surface defects in die 

cast parts.  

 

Although neural networks have shown great potential in NDT flaw 

classification, the constraint to wider application of neural networks in NDT is the 

lack of sufficient training data from real defects [108]. As a consequence, neural 

networks can usually only be trained for very specific ultrasonic NDT applications, 

where there are sufficient real examples. It is also important to realise that neural 

networks generally require a significant amount of time for training. Over-training or 
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under-training will result in deviation from the required accuracy. However, the case 

studies presented in Section 2.7.6 have demonstrated that neural networks can be 

effective in defect classification tasks. From the literature, it can be concluded that 

the feed-forward back propagation neural network is suitable to carry out signal 

analysis for many ultrasonic signal processing applications. However for the current 

research problem, a suitable method of signal pre-processing which may be required 

prior to application of a neural network has not yet been thoroughly investigated.  

2.8 CONCLUSIONS  

The research findings presented by each of the authors cited in the literature 

review were critically examined to establish a sound foundation for this research 

project and to provide a basis for measuring its contribution to knowledge. Since this 

research relates to three different fields (die casting, ultrasonic NDT&E and artificial 

intelligence), it was important to provide a description of research activity in each of 

these disciplines. 

 

The results of this review revealed that there have been rapid advances in 

many areas of NDT technology with regard to casting quality inspection. This was 

mainly brought on by the requirements to deliver defect-free castings to customers 

and increase the quality standards of casting products. An extensive search of the 

literature has also indicated that an ultrasonic inspection of aluminium die castings 

with surface roughness beyond 50 μm has not been explored to-date. This is the topic 

of research addressed in this thesis. The lack of previous research for this particular 

application may be due to the nature of castings and the sensitivity of ultrasound. 

This literature search was focused on obtaining information on ultrasonic inspection 

of castings with complex shape, varying grain structures and surface roughness, and 

containing irregular porosities. However, it was found that there was no published 

research addressing these issues within an integrated (a combination of earlier 

mentioned factors) framework. Hence, there is a need to find the limitation of NDT 
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to inspect aluminium die castings within this context. The literature review indicated 

that ultrasonic techniques had the potential to be used to detect sub-surface defects in 

castings. It was clear that factors such as surface roughness and grain structure are 

critical variables in the inspection of castings. Nevertheless, these factors have not 

been sufficiently addressed in current inspection systems. 

 

From the different research contributions relating to the application of AI in 

the NDT&E field it was observed that ANN has been the approach of choice in 

ultrasonic signal classification. However, this approach has not been sufficiently 

explored for classification of weak signals obtained from rough surface die castings. 

Therefore, the development of an effective classification methodology for weak 

ultrasonic signals obtained from rough surface sections of castings through a neural 

network approach is investigated as part of this research program.  

 

The possibility of applying signal pre-processing techniques in relation to 

noisy ultrasonic signals has been mentioned by researchers as described in the 

literature review. Nevertheless, the use of techniques such as FFT, PCA and WT in 

combination for the pre-processing of ultrasonic signals has yet to be explored. The 

research documented in this thesis addresses these issues in detail. A methodology 

and associated techniques have been developed to pre-process ultrasonic signals and 

provide a basis for the design of an ultrasonic inspection system for detecting 

porosity type defects in aluminium die castings with rough surfaces. Prior to 

designing an experimental procedure for this research program it is important to 

understand the background of ultrasonic inspection and signal processing. This 

background information is presented in Chapter 3. 
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CHAPTER 3.  

ULTRASONIC INSPECTION AND 

NEURAL NETWORKS 

3.1 OVERVIEW 

The importance of understanding the ultrasonic NDT inspection method has 

been emphasised in Chapter 2. This chapter addresses the theoretical background to 

ultrasonic inspection (Section 3.2). Following on, the importance of selecting 

appropriate equipment for experimentation is highlighted. A brief description of 

different inspection methods and couplant types are provided. The basics of neural 

network systems are described in Section 3.7, which includes a description of neural 

network configurations specifically, the feed-forward and back propagation 

networks. Section 3.8 presents the application of MATLAB functions in carrying out 

training and testing of the neural network. 

 

The background information on ultrasonics presented in this chapter is 

extracted from the work of Krautkrämer and Krautkrämer [5], Blitz and Simpson 

[22] and Hellier [25].  
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3.2 THEORETICAL BACKGROUND 

The ultrasonic NDT method utilises sound waves at frequencies greater than 

20,000 Hz, which is beyond the range of human hearing. Ultrasonic testing is based 

on time-varying deformations or vibrations in materials [22]. In solids, several types 

of wave propagation can occur and are based on the way the particles oscillate [116]. 

Longitudinal and shear waves are the two modes of propagation most widely used in 

ultrasonic testing and in this research work. The particle movement responsible for 

the propagation of longitudinal and shear waves is shown in Figure 3.1 

 

In longitudinal waves, the oscillations occur in the direction of wave 

propagation. Since compressional and dilational forces are active in these waves, 

they are called pressure or compressional waves. They are also sometimes called 

density waves because their particle density fluctuates as they move. Compression 

waves can be generated in liquids as well as solids because the energy travels 

through the atomic structure by a series of compression and expansion movements 

[117]. 
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Figure 3.1 Longitudinal and shear wave propagation [116] 
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In the transverse or shear wave, the particles oscillate at right angles or 

transverse to the direction of propagation. Shear waves require an acoustically solid 

material for effective propagation and, therefore, are not effectively propagated in 

materials such as liquids or gasses. Shear waves are relatively weak when compared 

to longitudinal waves [118]. 

 

In ultrasonic testing, all discontinuity indications are compared to a reference 

standard. The reference standard may be one of many reference blocks or sets of 

blocks specified for an inspection method. Standardising does two things: it verifies 

that the instrument/transducer combinations perform as required, and it establishes 

sensitivity or gain setting at which all discontinuities of the size specified (or larger) 

will be detected [119]. However, in this research there were no specific standards 

available for calibrating the inspection of aluminium die castings except the general 

standards on the ultrasonic inspection of castings. Hence, a specific need arises to 

develop a standard for the aluminium die castings investigated in this research. This 

process is explained in detail in Chapter 4. 

3.3 EQUIPMENT SELECTION 

In an ultrasonic equipment, electrical energy is transformed into mechanical 

energy in the form of sound pressure waves through an ultrasonic transducer. All the 

information is presented in one of four presentation styles: A-scan, B-scan, C-scan 

and digital numeric. In an A-scan presentation (Figure 3.2), the initial sound pulse 

and the resulting rear wall echo or discontinuity reflections are displayed on a 

cathode ray tube (CRT). In a B-scan, the ultrasonic testing equipment displays the 

material being inspected as a cross-sectional view.  In a C-scan, the ultrasonic testing 

equipment displays the casting in a topographical perspective. This presentation is 

useful when plotting thickness of material over a given area. With digital numeric 

presentation the ultrasonic testing equipment calculates the “flight time” of the 

ultrasonic pulse from the transmitter until it is received back at the receiver.  
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Oscilloscope Screen 

A   Front Surface Reflection
 
B   Discontinuity Response 
 
C   Back Surface Reflection
 

 

Figure 3.2 A-scan with a discontinuity response [120] 

A thorough understanding of the sound beam, material and geometry of the 

part is required prior to development of an ultrasonic based inspection system. Once 

the appropriate equipment type is selected, the next step involves selecting the right 

ultrasonic transducer, which allows for the best penetration of the ultrasound. 

Additional information on the ultrasonic equipment used in this research is provided 

in Section 4.4.3.2. 

3.4 ULTRASONIC TRANSDUCERS 

The transducer is one of the most important components of any ultrasonic 

NDT system. The selection of the correct transducer is important in achieving the 

necessary sensitivity and resolution of the system [116]. Transducers are available in 

a variety of frequency ranges, sizes and application dependent housings. Ogilvy [73] 

emphasised that the selection of a transducer also depends on the type of material to 

be inspected. Another important criteria in the selection of a transducer is the type of 

inspection method used for testing castings. According to Silk [121], the frequency 

of a transducer is a major determining factor in its application. The work carried out 

by Silk [121], emphasised the importance of the study of penetration, depth 

resolution and sensitivity of an ultrasonic system, factors which are strongly 
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dependent upon the nature of the pulse emitted by the transducer. Given that the 

pulse emitted depends on the particular transducer characteristics such as crystal size 

and diameter, the selection of a suitable ultrasonic transducer for any given ultrasonic 

NDT problem is very important.  

 

The resolution of a transducer can be defined as the minium size of a feature 

or discontinuity that can be determined by its use. The smallest defect size that can 

be detected or the resolution of the transducer is half the wavelength (λ/2). 

Therefore, smaller the defect, the higher is the frequency of ultrasound required for 

detecting it. Unfortunately, using a higher ultrasonic frequency results in a higher 

rate of signal damping in the material. The lower frequency probes are therefore 

preferred to reduce the damping of ultrasound within the test material. However, the 

testing capability of the probe is compromised if the frequency of the ultrasound is 

too low (1 - 2 MHz). Further, in order to obtain a satisfactory amplitude of the 

ultrasound signal, the probe diameter should not be less than 5 mm [5]. In summary, 

there is a need to correlate the sensitivity and other characteristics of the ultrasonic 

transducer and quality requirement of the castings to be inspected. 

  

Transducer frequency and thickness of piezoelectric crystalline material that 

produces the ultrasound are related such that the thinner the crystal, the higher the 

ultrasonic frequency. Most ultrasonic NDT inspection tasks are carried out at 

frequencies from 0.2 to 25 MHz [44-46,122,123]. The higher the frequency of a 

transducer, the straighter the sound beams, and the greater the sensitivity, 

measurement resolution, and attenuation. Furthermore, for any given frequency, the 

larger the transducer, the more directional the sound beam and lower the sensitivity. 

 

The ultrasonic waves generated by a transducer will emerge initially as a 

parallel beam that diverges later [124]. The ultrasonic beam can be divided into two 

fields: the near field and the far field (Figure 3.3). There are significant fluctuations 

in the sound intensity in the vicinity of the ultrasonic transducer due to constructive 

and destructive interference of the multiple waves which originate from the 

transducer face. As illustrated in Figure 3.3, the echo amplitude goes through a series 

of maximum and minimum regions and ends at the last maximum in the near field 
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[116]. If a flaw is positioned in the near field region it can be difficult to detect due to 

non-uniform sound intensity. The area where the ultrasonic beam is most uniform 

and spreads out in a pattern originating from the center of the transducer is called the 

far field [125]. The region at which the far field starts is important since this is where 

the sound wave is well behaved and at its maximum strength [125]. Therefore, this is 

the region in which optimal detection occurs. 

Near Field 

Far Field

 

First Minimum 

Last Maximum 

 

Figure 3.3 Sound fields of a transducer [116] 

The area influenced by the ultrasonic vibrations transmitted by the probe is 

known as the sound field, and is important for the evaluation of defect size. A sound 

wave transmitted from a transducer radiates in one direction within a given angular 

range. The cross-section of the sound beam widens with increasing distance and the 

energy is distributed over a greater area. The intensity of sound energy per unit area 

thus becomes smaller. This phenomenon is known as beam divergence (Figure 3.4). 

The beam angle is the angle between the beam axis of a refracted wave and the angle 

to the refracting interface. The refraction when passing through the interface changes 

the direction of propagation of the sound wave according to Snell's reflection law 

[22] as presented in Section 2.5.5. 
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Figure 3.4 Beam divergence with beam angle spread (α) and near field area (N) 

for the diameter of the transducer (D) [114] 

3.5 INSPECTION METHODS 

An ultrasonic sound beam generated by the transducer travels perpendicular 

to the test piece in the normal pulse-echo method [5]. The pulse-echo method utilises 

the reflected part of the ultrasonic wave for the evaluation of defects. This is one of 

the most commonly used ultrasonic methods to inspect the quality of materials [126]. 

 

A normal beam through transmission is similar to the pulse echo, except a 

second transducer is placed on the opposite side of the test piece to detect the 

ultrasonic energy passing through the material [5]. This method is normally used 

when the test parts are easily accessible on both sides [127]. Prabhakar et al. [128] 

highlighted a similar kind of two-sided casting inspection method in their work. They 

also stated that an added advantage of the technique is that the received frequency 

can be varied for a chosen transmitter frequency. In most ultrasonic NDT 

applications the pulse-echo method is preferred ahead of the through-transmission 

method due to ease of use and no requirement to access both sides of the part being 

inspected.  
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3.6 COUPLANT METHODS  

3.6.1 Overview 

A couplant is a substance, usually a liquid or semi-liquid, used between the 

transducer unit and test surface to permit or improve transmission of ultrasonic 

energy [25]. Typically water, oil, or gel is used as couplants in ultrasonic testing. In 

this research, contact and immersion type couplant methods are investigated. This 

section provides a brief description of contact and immersion type ultrasonic 

inspection. 

 

 

3.6.2 Contact Testing 

In manual ultrasonic inspection, the transducer is typically placed in physical 

contact with the material being inspected. In contact testing, coupling is achieved 

with water–soluble or oil based liquid being placed between the transducer and 

material. This ensures that the maximum ultrasonic energy enters the material, when 

the transducer is placed in contact with the part, however, some pressure is manually 

applied to ensure good acoustic contact with the test piece. Hence, the result obtained 

from contact testing is dependent on the pressure applied by an operator on the 

transducer through the coupling medium. 

 

According to Fallon [129], contact ultrasonic testing is difficult to employ on  

curved surface iron castings. The other critical issues are the grain size and surface 

roughness which affect the results in contact testing of castings. These critical factors 

are important to consider in the ultrasonic inspection of aluminium castings. 

 

 

3.6.3 Immersion Testing 

The principal method for achieving the necessary coupling is immersion, 

using water as a coupling medium. Although often oil, grease and glycerine are used 
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as couplants in ultrasonic inspection of castings, water is more likely to be used in an 

on-line production inspection system than oil or other liquid.  

 

In automated ultrasonic inspection, the technique involving total immersion 

of the work piece under inspection has become universally accepted [130]. This 

requires the use of an immersion tank where the part and the transducer are placed 

under water as shown in Figure 3.5. Ultrasonic immersion inspection involves one of 

the following four procedures: normal beam pulse-echo, normal beam through-

transmission, angle beam pulse-echo and angle beam through-transmission. The 

normal ultrasonic immersion inspection set-up is shown in Figure 3.5 along with the 

CRT screen of the flaw detector. 

 

 Figure 3.5 Immersion testing set-up and CRT screen with discontinuity [116] 

3.7 BACKGROUND ON NEURAL NETWORKS 

3.7.1 Overview 

This section presents the background information on neurons and neural 

network configurations. A brief description of the feed-forward network and the back 

propagation training method is also presented in Sections 3.7.3 and 3.7.4 
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respectively. The neural network toolbox from MATLAB software is used for 

training and testing ultrasonic signals. 

 

 

3.7.2 Neuron Model  

An artificial neural network comprises a number of simple processing units 

called neurons, which are able to communicate by sending signals to each other 

through a large number of biased or weighted connections. Figure 3.6 shows an 

elementary neuron with inputs. Each input (p1, p2,…,pR) has a corresponding weight 

value (w1, w2,…,wR), where R = number of inputs to the neuron. The sum of the 

weighted inputs and the bias b, forms the input (n) to the transfer function f. Neurons 

may use any differentiable transfer function f to generate their output a from n, which 

is equal to the sum of wp and b. 

 

Figure 3.6 Neuron model [91] 

Each neuron (including the neurons in the last layer) has an output that is 

limited according to the transfer function of the particular neuron. For instance, if the 

‘logsig’ transfer function is used, the output may vary between 0 and 1. However, if 

the ‘tansig’ function is used, the output may vary between -1 and +1  [91]. The three 

transfer functions logsig, tansig, and purelin are the most commonly used transfer 

functions for the back propagation method [91]. 
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The following guidelines are recommended in deciding the number of inputs 

to a network for an inspection application [87]: 

• The inputs should contain sufficient data to distinguish between defect and 

non-defect signals. 

• The inputs must be representative of that defect type and preserve the 

information required for successful classification. 

• The number of representative training examples must be adequate. 

 

 

3.7.3 Neural Network Configuration 

Neural networks possess particular properties such as an ability to learn or 

adapt to changes, to generalise using incomplete data, and to cluster and organise 

data [131]. Generally, the neural network is trained by feeding it a set of teaching 

patterns and changing its weights according to a defined learning rule. The weights 

are changed at every epoch. During training and testing of a neural network, an 

Epoch is defined as processing of a single set of input signals of the network. 

According to Timothy [132], paradigms of learning may be categorised into two 

distinct types: 

• Supervised/Associative: the network is trained by providing inputs and 

matched output patterns. 

• Unsupervised/Self–organised: a network is trained in response to clusters of 

patterns. This method relies on a set of algorithms that discovers salient 

features of the input population statistically. 

In this research, supervised learning was applied as there was no clear set of 

rules for the signal types generated from the rough surface sections of the castings. 

 

 

3.7.4 Feed-forward Networks  

Feed-forward networks allow signals to travel in one direction, from input to 

output. The feed-forward networks associate inputs with outputs. Amongst the 

numerous Artificial Neural Network (ANN) architectures described in the literature, 
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the feed-forward network is the most commonly used (refer Section 2.7.5). The 

neural network type used in this application is a feed-forward network. An example 

of a three layer network is shown in Figure 3.7 along with the input nodes, which are 

associated with the signal to be classified. The first group of units (neurons) 

comprise an input layer, which accepts the data values to be interpreted via the input 

nodes. The next group of units form a hidden layer, and the final layer of units is the 

output layer. Each neuron communicates through a defined function as shown in 

Figure 3.6.  

 

Figure 3.7 Three layer feed-forward neural network with input nodes 

The feed-forward network with one or more hidden layers is mainly used in 

NDT defect classification [77,114]. Multiple layers of neurons with non-linear 

transfer functions allow the network to learn both non-linear and linear relationships 

between input and output vectors. In this investigation only two classifications viz., 

“defect” and “no-defect” were used. Consequently, the output will be either “1” or 

“0”.  

 

The training process of the feed-forward network requires a set of examples 

consisting of network inputs and target outputs. During training, weights and biases 
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of the network are iteratively adjusted to minimise the network performance function 

which is the mean square error (mse). In MATLAB, this function is defined by 

net.performFcn [91]. The default performance function for a feed-forward network is 

mean square error (mse). The mean square error value is the average squared error 

between the network outputs and the target outputs [91]. There are several training 

algorithms for feed-forward networks such as variable learning rate, conjugate 

gradient and scaled conjugate gradient algorithms [91]. All of these algorithms use 

the gradient of the performance function to determine how to adjust the weights to 

maximise performance. The gradient is determined using a technique called 

backpropagation, which involves performing computations backwards through the 

network [91]. 

 

 

3.7.5 Back Propagation Network 

The Back Propagation (BP) network training algorithm is an iterative 

gradient algorithm designed to minimise the mean square error between the actual 

output of a feed-forward network and the desired output [133]. BP was created by 

generalising the Widrow–Hoff learning rule to multiple–layer networks and non-

linear differentiable transfer functions [91]. Input vectors and the corresponding 

target vectors are used to train a network until it can approximate a function, 

associate input vectors, or classify input vectors in an appropriate way defined by the 

target.  

 

The gradient descent algorithm in BP can be implemented using two 

approaches viz., incremental and batch mode. In the incremental mode, the gradient 

is computed and the weights are updated after each set of input is presented to the 

network (refer Figure 3.6). In the batch mode, the weights are updated after all the 

sets of inputs are presented to the network. The batch mode is generally used because 

of faster convergence to the mean square error (mse) when compared with the 

incremental mode [91]. Also given the fact that the inspection methodology is being 

developed for future automation, where the inspection cycle time factor is critical, 

the batch mode of processing is the preferred option. 
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3.7.6 Scaled Conjugate Gradient 

One of the popular supervised learning algorithms is a Scaled Conjugate 

Gradient (SCG) mechanism. SCG is fully automated, includes non-critical user-

dependent parameters, and avoids time consuming line search iteration to determine 

an appropriate step size. Based on experiments Moller [134] concluded that, SCG 

was (nearly 25 times) faster than other standard BP techniques and produced a high 

classification percentage. SCG was benchmarked against the standard back 

propagation algorithms [134]. The training parameters for trainscg (MATLAB 

function for SCG) are epochs, show, goal, time, min_grad, max_fail, sigma and 

lambda. The training status is displayed for every show iterations described in the 

network [91]. The other parameters determine when the training stops in the neural 

network. The training stops if the number of iterations exceeds a given number of 

epochs, if the performance function drops below a certain goal value, or the 

magnitude of the gradient value is less than min_grad function [91]. The function 

max_fail is associated with the early stopping technique during the network training 

process [91]. The parameters sigma determines the change in the weight for the 

second derivative approximation and the parameter lambda regulates the 

indefiniteness of the Hessian matrix [134]. All these parameters have been explained 

in detail by Moller [134]. 

3.8 ANN SYSTEM ARCHITECTURE 

3.8.1 Overview  

The first step in training a feed-forward network is to create the network 

object. The next step is to initialise the weights and biases of the network; then the 

network is ready for training. There are situations when the weights have to be 

reinitialised. Both theoretical analysis and simulations indicate that large networks 

tend to overfill the training data and thus have a poor generalisation, while networks 

that are too small have difficulty in learning through the training samples.  
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3.8.2 Transfer Function 

The behaviour of a feed-forward ANN depends on weights and the input-

output function (transfer function) that are specified for the units. They typically fall 

into one of the following three categories [91]: 

• Linear - the output activity is proportional to the total weighted input 

• Threshold - the output is set at one of two levels, depending on whether the 

total input is greater than or less than some threshold value, and 

• Sigmoid - the output varies continuously but not linearly as the input changes. 

Sigmoid units bear a greater resemblance to real neurones than do linear or 

threshold units. 

 

 

3.8.3 Initialising Weights  

Before training a feed-forward network, the weights and biases have to be 

initialised. In general, the each separate weight value is set to a random value [91]. 

An automatic initialisation of the weights has to be carried out before each new 

training set is used. The initialisation function takes a network object as input and 

returns a new network object with all weights and biases initialised. The weights 

specify the strength, and influence the effects of each neuron on the applied transfer 

function [91]. 

 

The network weights and biases are initialised through a simulation process. 

The following procedure is followed in simulating the performance of a three-layer 

network: 

• The network is presented with training examples with the desired pattern of 

the output units. 

• The actual output of the network is compared with the desired output. 

• The weight of each connection is changed so that the network produces an 

output closer to the desired output. 
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3.8.4 Simulation and Training of Network 

Once the weights and biases are initialised, the network is ready for 

simulation and training. The simulation of the network takes the network input and 

the network object defined during the initialisation process and returns a network 

output. The training process requires a set of examples of proper network behaviour 

– network inputs p and target outputs t. The function shown in the single neuron 

model (Figure 3.6) would be applied to the three layer network, as shown in Figure 

3.7. The weights are adjusted for each neuron in three layers depending on the mean 

square error (mse) and the desired target t.  

 

The learning rate used in Feed-forward Neural Networks is a numeric value 

used during Back Propagation (BP) to adjust the weights or connections between 

neurons in adjacent layers. The learning rate is important because, if the amount of 

change is too small then it will take a long time to train the network and if it is too 

large, then the network may not find the set of weights that can provide an optimum 

solution [91]. During BP, the value predicted as the output of a Neural Network is 

compared against the actual output value and the difference used as an error estimate 

to adjust the weights used in the Neural Network. The rate of change of the weights 

during the BP phase where the weights and bias are being adjusted to reduce the 

prediction errors are controlled by the learning rate [91]. 

 

In the neural network training process, to avoid the network converging to a 

local minimum, the use of a momentum rate allows the network to potentially skip 

through local minima. Momentum can be applied to BP training by making weight 

changes equal to the sum of a fraction of the last weight change and the new change 

suggested by the BP algorithm [91]. A history of the change in momentum rate and 

direction are maintained and used, in part, to push the solution past the local minima. 

The momentum parameter controls the amount of error adjustment with each 

iteration during training the neural network for signal processing [91]. Learning rate 

and momentum parameter both affect the speed and quality of the training (learning) 

process, and error values provide information on which a decision is taken as when 

to stop training. 
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3.9 SUMMARY 

This chapter has presented detailed background information on ultrasonic 

inspection. The most widely used reference on ultrasonic NDE was authored by 

Krautkrämer and Krautkrämer [5]. It discussed a wide range of test condition set-ups 

and described the underlying physics. An updated volume of the Non-destructive 

Testing Handbook [51] was also a reference source for basic ultrasonic inspection. 

Contributions by Silk [121], Halmshaw [50,127] Blitz and Simpson [22] and Hellier 

[25] were considered as references that discuss a variety of inspection principles. 

These references highlighted the importance of the selection of proper inspection 

equipment. This background information on ultrasonic inspection aided in the 

development of a suitable inspection procedure for the inspection of aluminium die 

castings with rough surfaces. This inspection procedure is presented in Chapter 4 

along with the description of sample parts and equipment used in this research. 

 

The background theory on neural networks (Section 3.7) provided an 

understanding of the network parameters and the steps involved in training and 

testing a neural network to process ultrasonic signals. The manual on neural network 

toolbox from MATLAB software [91] provides detailed information on the feed-

forward back propagation neural network and its training algorithms. The literature 

review on neural networks emphasised the selection of appropriate neural network 

parameters such as number of neurons and number of epochs to achieve acceptable 

signal classification. 
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CHAPTER 4.  

DESIGN OF EXPERIMENTAL 

SET-UP 

4.1 OVERVIEW  

This chapter discusses the selection processes that determine suitable 

experimental parameters required for the ultrasonic inspection of aluminium 

castings. A detailed description of sample castings used in this research is presented 

in Section 4.3. An extensive experimentation program is carried out on the selected 

sample castings to determine suitable experimental parameters. Thereafter, 

inspection of castings is carried out and the ultrasonic signals are analysed using 

signal processing techniques for the purpose of identifying gas porosity defects. This 

chapter also describes in detail the experimental set-up used for the research and the 

calibration process for the ultrasonic equipment (Section 4.6). Finally, a brief 

overview of the validation methodology for the ultrasonic signals obtained is also 

presented. 
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4.2 EXPERIMENTAL METHODOLOGY 

In this section, the methodology used to obtain valid results is explained. This 

is illustrated in Figure 4.1. 

 

Figure 4.1 Flow chart of experimental methodology 

The sample castings were obtained from two collaborating industry partners; 

Nissan and Ford, Australia. The critical sections where the defects were prominent 

were considered for ultrasonic testing. Initially, X-ray inspection was carried out on 

the sample parts to determine defective and non-defective castings’ sections. X-ray 

results were stored in an image file format. Then, ultrasonic inspection experiments 

were carried out on the critical section of the castings to choose the appropriate 
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inspection technique from the available methods (contact and immersion techniques). 

Inspection parameters such as frequency, velocity and water path distance were 

determined to carry out inspection on the sample die castings. Finally, the results 

obtained from ultrasonic inspection were validated using visual analysis and X-ray 

NDT inspection on the defective sections of the castings. 

4.3 SAMPLE PARTS 

4.3.1 Overview 

The sample castings used in this investigation were selected from the industry 

partners based on their requirement for detection of sub-surface discontinuities. The 

casting sections to be inspected were identified based on the predominant occurrence 

of sub-surface discontinuities. The sample parts used for ultrasonic inspection were 

the manual transmission case and structural oil sump pan from Nissan Casting Plant 

Australia Pty. Ltd., and Ford Motor Company Australia Limited respectively. 

 

 

4.3.2 Selection of Castings 

As manual transmission case (MTC) castings have little variation in surface 

roughness and grain size, they were selected for the purpose of calibration of the 

equipment. They were also used to obtain the initial experimental parameters. 

However, in order to investigate the effects of material variations on ultrasonic 

inspection performance, most of the subsequent experiments were carried out on 

structural oil sump pan (SOSP) castings. This component has significant variations in 

surface roughness and grain structure along critical areas of the casting. One other 

major difference between these two types of castings was the thickness. The 

thickness of MTC casting varied between 8 mm and 25 mm, however, the relevant 

sections of SOSP castings had a constant thickness of 8 mm. 
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Nissan casting plant Australia, uses X-rays to test parts off-line as a part of 

their quality control system. The X-ray inspection is reasonably effective and 

porosity is normally detected in castings from a sample lot. However, casting 

manufacturers need to detect defects in the early stages of the casting process and 

carry out inspection of the entire set of castings instead of inspecting a sample from 

each lot. Moreover, if a part is found defective at the customer’s site the whole batch 

of castings is rejected, resulting in heavy financial penalties for the manufacturer. As 

such, there is a need for an advanced inspection system to detect sub-surface defects 

on-line at Nissan casting plant Australia and other organisations with similar 

practices of inspection. 

 

 

4.3.3 Manual Transmission Case  

The surface areas of the manual transmission case (MTC) near the sections to 

be machined were considered critical. They were inspected to determine the presence 

of porosity defects near the machining surface. Figure 4.2 shows the main areas of 

interest: the main bearing hole (A), shift rod holes (B), M8 x PL1.25 threaded holes 

(C) and counter bearing hole (D). 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.2 Top view of manual transmission case die casting 

A

B
C

D
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The critical areas in the castings were around bearing holes and seal bosses. 

Porosity defects were most noticed at these areas. Porosity type defects were 

identified as the most critical sub-surface defects in MTC castings, as they can lead 

to leakage in parts containing fluids.  

 

 

4.3.4 Structural Oil Sump Pan 

Structural oil sump pan (SOSP) castings suffer from leakage problems caused 

by vertical cracks and porosity at the in-gate region as shown in Figure 4.3. The in-

gate area between the arrows in Figure 4.3 is the area where final solidification 

occurs, leading to shrinkage in this zone which, in turn, causes porosity. The porosity 

problem is further aggravated by the removal of the in-gate section from the sump 

through a trimming operation. This opens any porosity near the surface. A leak will 

result if porosity defects extend through the surface opening to the other side.  

 

 

 
(a)                                                 (b)                              

Figure 4.3 Structural oil sump pan (a) outside view (b) inside view 
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The problem of leakage is critical in SOSP castings and occurs through an 

aluminium wall of the casting, or in a seal area after machining. The critical section 

is indicated between the arrows in Figure 4.3 (a), which was the focus of the 

inspection. Further, due to the trimming operation, the area of interest in this section 

is within a depth of approximately 3 mm from the surface of the casting. Failure due 

to leakage is usually the result of porosity defects in the casting wall, caused either 

by entrapped gas or shrinkage during solidification. This problem can result in 

leakage of compression oil and coolant in the engine assembly.  

 

 

4.3.5 Aluminium Alloy 

The chemical composition of Aluminium alloy CA313 and ADC12 from 

which castings are manufactured is presented in Table 4.1. The alloys have almost 

the same combination of elements. In addition to the elements listed in Table 4.1, a 

very small percentage of Titanium, Chromium, Calcium and Potassium are also 

present in the alloy. 

 
Composition in % 

Alloy Base Silicon Iron Copper Manganese Magnesium Nickel Zinc Tin 

ADC12 

(MTC) Al 9.5 – 11 0.8 - 0.9 2.5 – 3.5 0.4 (max) 0.5 (max) 0.5 (max) 1 (max) 0.1(max) 

CA313 

(SOSP) Al 9.0 – 10 0.75 - 0.95 2.5 – 3.5 0.5 (max) 0.3 (max) 0.5 (max) 1 (max) 0.3 (max) 

Table 4.1 Chemical composition of Aluminium alloy CA313 and ADC12 

MTC and SOSP castings are made of ADC12 and CA313 industrial standard 

aluminium alloys. These alloys are the most widely used general-purpose alloy. They 

are used principally for high pressure die castings with thin walls, such as manual 

transmission cases, structural oil sump pans and crankcases. The tensile strength of 

this alloy is approximately 270 MPa (ultimate stress) and 160 MPa (yield stress). 

Since CA313 alloy is unsuitable for welding operations, rework is not usually 

possible on the rejected castings. As such, the rejected castings are scrapped.  
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4.4 EXPERIMENTAL METHODS AND EQUIPMENT 

4.4.1 Overview 

There are two types of coupling methods available in the ultrasonic NDT 

technique as described in Section 3.6. In some cases, air can also act as the couplant 

with the use of air-coupled transducer types. They mostly operate in the frequency 

range of 100 kHz up to approximately 2 MHz. In this research, the objective was to 

detect 0.5 mm diameter defects. However, to detect defects of this size, a higher 

frequency than is commonly used in air-coupled transducers (greater 2 MHz) is 

necessary. Therefore, air coupled transducers were not considered in the current 

research. The initial experiments were carried out using both methods (contact and 

immersion type) to determine the preferred process for inspecting rough surface 

aluminium die castings.  

 

 

4.4.2 Contact Inspection 

Contact inspection was carried out on the sample castings to confirm the 

viability of this method. Normal beam contact probes of 5 MHz and 10 MHz 

frequencies were used in ultrasonic contact testing (Table 4.2). The velocity of the 

ultrasonic beam in aluminium according to Australian Standard 2083 [119] is 6320 

m/s and it is used in calculating the values in Table 4.2. The back wall echo 

(reflected ultrasound signal from the back surface of the casting) was not detected in 

certain sections of the castings due to surface roughness of the castings. In these 

experiments, a contact probe was moved by hand along the surface of both the 

manual transmission case and SOSP castings. Even with the use of a couplant, it was 

difficult to physically move the transducer along the surface. The ultrasonic 

instrument used in this application was an Epoch III from Panameterics, U.S.A. 
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Table 4.2 Contact transducers 

In using the normal beam mode of inspection, it was not possible to detect a 

clear back wall echo signal due to the front surface roughness of the SOSP castings. 

To detect a clear back wall echo, it was necessary to have the probe placed with solid 

contact, at an angle close to perpendicular to the surface. However, due to the rough 

surface of the castings, it was not possible to reliably place the ultrasonic probe in 

such a manner. Without proper contact, it was not possible to ensure that a sufficient 

amount of ultrasonic energy was transmitted at an angle directly into the casting. 

Therefore, it was not possible to obtain a sufficiently strong signal reflected from the 

back surface to the probe.  

 

Angle beam inspection was carried out with different angled wedges (30, 45, 

60 and 90 degrees). The different combination of wedge shapes and frequency 

probes were investigated (Table 4.2). However, due to the rough surface of the 

casting, it was difficult to move the probe with a wedge along the surface of the 

casting. The outcomes of the ultrasound contact testing experiments carried out on 

the test cases supported the view of other researchers (refer to Sections 2.4.6.1 and 

2.5.3.3) that it was difficult to obtain satisfactory results with contact inspection for 

complex shaped parts. 

 

 

Transducer
Frequency  

(MHz)

Diameter 
of 

transducer 
(mm)

Nearfield 
(mm)

6 dB Beam 
Spread

Wavelength 
(mm)

V109 5 12.7 6.4 0.05 1.264

V112 10 6.35 15.9 0.05 0.632

V535 5 6.35 7.975 0.1 1.264
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4.4.3 Immersion Testing Inspection Rig 

4.4.3.1 Overview 

The experimental set-up for ultrasonic immersion testing consisted of an 

ultrasonic flaw detector, immersion probes with different focal length in water, a 

water tank, calibration blocks, probe holding device and probe handling device. 

Figure 4.4 shows the experimental set-up where a rough surface casting or a cut 

section of the casting was inspected with an ultrasonic probe. The sample part was 

immersed in the water tank and a PUMA robot arm moved over the top of the casting 

and the ultrasonic signals stored in the flaw detector. Then, the ultrasonic data was 

transferred to a computer for analysis. The picture of the PUMA robot and water tank 

along with the ultrasonic equipment is shown in Appendix B.  

 

Figure 4.4 Schematic diagram of ultrasonic immersion testing experimental set-up 

Water and Sintolin (a reducing agent or anti–oxidising substance) were used 

as the coupling medium to avoid formation of an oxide layer on the surface of the 

aluminium alloy casting. The reaction between aluminium (Al) and water (H20) 

forms alumina or aluminium oxide as shown in Equation 4.1. 

 

2Al + 3H20                                 Al203 + 3H2                (4.1) 

 

The velocity of ultrasound in the coupling medium (water + 5% of Sintolin) 

was determined to be the same as that in water, 1480 m/s [119]. Commercial 
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lubricating oil of the lowest viscosity was also investigated for this application but 

found to be unsatisfactory on account of unpleasant fumes. 

 

4.4.3.2 Epoch III 

The Epoch III digital ultrasonic flaw detector, as shown in Figure 4.5, 

incorporates an internal alphanumeric data logger (a type of memory storage) that 

stores A-Scan waveforms with set-up information and flaw detection readings. A-

scans stored in the Epoch III are transferred to the signal processing unit (Pentium III 

750 MHz processing speed computer) via an RS232 cable.  

 

 

Figure 4.5 Epoch III ultrasonic equipment with immersion transducers 
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4.4.3.3 Immersion Transducers  

An immersion transducer is a single element longitudinal wave transducer. It 

is specially designed to transmit ultrasound in situations where the test part is 

partially or wholly immersed in water. The types of probes used in this research work 

are listed in Table 4.3. The 10 MHz and 20 MHz frequency probes selected for this 

research had a focal length of 25.4 mm (1”). 

Frequency 
(MHz) 

Manufacturer Diameter 
of Probe 

(mm)  

Focal 
Length 
(mm) 

Probe length 
(mm) 

2.25 NDT Instruments 
Inc 

9.525 Non-focal 36 

5 Panametrics  
(V308) 

19.05 101.6 6 

7.5 Panametrics 
(V321 ) 

19.05 101.6 6 

10 Panametrics 
(V312) 

6.35 25.4 30 

15 Panametrics 
(V313) 

6.35 25.4 30 

20 Panametrics 
(V316-NSU ) 

3.5  25.4 64 

Table 4.3 Immersion probes 

4.4.3.4 Probe Handling Device 

A PUMA robot was used to effect the X, Y and Z directional movement. It 

has six degrees of freedom and six joints. Table 4.4 provides detailed information on 

the general functional capabilities of the PUMA robot.  

Feature Specification 

Position Repeatability  +/- 0.1 mm 
Implement Velocity 470 mm/s straight line moves at VAL II  (controller) 

speed 100 

Payload 4 kg or 2.5 kg in the static mode and dynamic mode 
respectively 

Table 4.4 General functional capabilities of PUMA robot 
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A special probe holding device (manipulator) was designed using 

Pro/Engineer, a CAD software package, and fabricated for this research. It was then 

attached to the end effector of the PUMA robot. The major factors considered in the 

design were the total payload of the end effector and ease of handling the probe. 

Based on the final design, the probe holding device had a mass of 1.25 kg. 

 

Figure 4.6 illustrates the probe holding device with a 10 MHz ultrasonic 

probe attached. Two laser pointers were attached to the device for tracing the path of 

the ultrasonic transducer along the surface of the castings. They were also used to 

find the distance between the probe and castings (Appendix C). The set up was built 

such that the beam from the ultrasonic immersion probe was co-axial with the laser 

pointer assembly.  

 

Figure 4.6 Probe handling device with 10 MHz immersion probe 
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4.5 TESTING PROCEDURE AND SAMPLE PREPARATION 

4.5.1 Overview 

In the process of developing a suitable ultrasonic immersion technique for the 

inspection of aluminium castings, many issues had to be considered. The defect 

parameters (size, location and orientation) had to be identified in the castings and 

variations in the values of parameters had to be determined. This section describes 

the preparation of sample castings to carry out ultrasonic immersion testing. The 

experimental procedure developed in this research minimised the effects of the 

factors which prevent the echo reflecting from the defect or back wall thereby 

enabling better defect identification. The following factors are important: 

 

• In high pressure die casting, the variation of defects in terms of location and 

size is high [13]. To minimise this variation, sample castings were selected 

from a specific casting machine, and 

• Unavailability of sufficient castings with porosity type defects necessitated 

the introduction of defects through side-drilled holes in good quality castings 

for the purpose of testing as shown in Figure 4.7. 

 

 

Figure 4.7 Side view of the in-gate casting section with the 1 mm side-drilled holes 

(a) unclosed holes (b) closed holes with a metallic cement paste 
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The sample preparation and inspection procedure used is listed in Table 4.5. 

The following steps were carried out on 30 casting sections. 

 

Step 
No. 

Inspection Procedure 

1 Machining of in-gate section of the castings into small sections with 
dimension of 100 mm x 10 mm x 10 mm 

2 X-ray inspection of small casting sections 

3 Ultrasonic immersion testing at different frequencies (2.25 to 20 MHz) 

4 Surface profile measurement 

5 Side-drilled holes of size 0.5, 0.7 and 1 mm at different depth (2, 3 and 4 
mm) along the thickness of the castings 

6 X-ray inspection of casting sections with drilled holes 

7 A metallic cement paste used to cover the openings in the casting produced 
from the side-drilled holes. It is covered in order to avoid water from 
entering the holes during ultrasonic immersion testing 

8 Ultrasonic immersion testing at different frequencies 

9 Machining of 0.3 mm thickness from top surface of the castings at the 
rough sections and surface profile measurement 

10 Ultrasonic immersion testing of machined castings at different frequencies 

11 Machining of another 0.3 mm thickness from top surface of the castings at 
the rough sections and surface profile measurement 

12 X-ray inspection of casting sections 

13 Ultrasonic immersion testing at different frequencies 

Table 4.5 Inspection procedure 

 

4.5.2 Simulated Defects  

The literature has indicated that many researchers [58,60,125] have produced 

their own test blocks containing simulated defects (similar to the original defects). 

The main reason for the use of simulated defects is the inability to obtain a sufficient 

number of real defect samples in practice [60]. By using simulated defects, it is 
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possible to obtain an adequate number of defect signals for the training and 

validation of the neural network. 

 

 In this research, simulated defects were used to identify the capabilities and 

limitations of the ultrasonic inspection technique in detecting sub-surface defects in 

castings with significant surface roughness. Cut sections of the in-gate area of the 

structural oil sump pan casting (Figure 4.8) were used as test blocks. Simulated 

defects were then incorporated in these test blocks and used for training and 

validation of the neural network configuration used in the ultrasonic inspection 

system.  

 

Figure 4.8 A cut section of the in-gate area of structural oil sump pan casting 

showing the rough surface area 

Rajagopalan et al. [134] studied the effects of soft computing in a flexible 

framework for fault diagnosis in an eddy current based non-destructive application. 

In their case study they also compared the eddy current signals obtained from natural 

and simulated defects, and combined defects (natural and simulated) in stainless steel 

plates. One of the main conclusions of their study was the suitability of artificial 

defects to train a neural network, which can subsequently be used to correctly 

classify natural defects [134]. Their conclusion is important when there are not 

enough natural defects available to train and test the neural networks. Another issue 

with natural defects is that they have a number of parameters (location, size and 

orientation) that are difficult to control and verify without employing destructive 

testing. This also includes the morphological aspects like surface roughness of the 

flaw. Nevertheless, the implantation of artificial flaws introduces other parameters 

that are hard to control, such as the effect on surrounding material. 
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As stated previously, side-drilled holes were induced in the castings for 

purposes of this research. This was undertaken in a similar manner to Onozawa et al. 

[66], who applied side-drilled holes for near surface flaw detection in castings. Their 

work addressed only smooth surface parts, however, in this research rough surface 

castings were inspected using ultrasound. The side-drilled holes were placed at 

depths of 1, 2 and 3 mm (critical areas) below the inspection (front) surface of 

castings. The sizes of the holes were 0.5, 0.7 and 1 mm in diameter to satisfy the 

requirements of the research project. The depth and the size of the side-drilled holes 

were chosen to closely match the depth and size of the natural defects (gas porosity) 

of interest in this research (Section 4.3.4).  

 

Each casting section contained between 5 and 10 side-drilled holes. Not all of 

the side-drilled holes were used for subsequent ultrasonic testing. This was due to the 

problems created either by the drill bits breaking off (as shown in Figure 4.9a) or 

holes being located in an area not suitable for ultrasonic inspection. Figure 4.9 shows 

the X-ray image of an in-gate section with simulated defects of 0.5, 0.7 and 1 mm 

diameter hole size. The actual casting sections, from which these X-ray images were 

taken is shown in Figure D.1 (Appendix D). It is evident from the visual comparison 

of the X-ray images in Figure 4.9 that 0.5 mm diameter holes are difficult to detect 

when compared to 0.7 mm and 1 mm diameter holes in the rough surface (Ra0) in-

gate casting sections. 

 

 

4.5.3 Surface Roughness Variation and Measurement 

The surface roughness of castings is a critical issue in ultrasonic inspection. 

Hence, emphasis has been placed on the study of ultrasonic signal variation caused 

by surface roughness. The surface roughness was predominant in the critical sections 

of the SOSP castings where the in-gate section of the casting had to be removed. 

Once the in-gate sections of the casting were detached through a trimming operation 

(as mentioned in Section 4.3.4), the surface of the casting may open, and a leakage 

may result. Surface roughness cannot be reduced through machining because even 

light machining cuts are likely to penetrate the surface, exposing the unsatisfactory 
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structure with defects. Experiments were carried out on casting sections with 

different surface roughness ranging from the as-cast surface to the machined surface 

at the in-gate section of the SOSP castings with simulated and real defects.  

 

  
       (a)                                        (b)                                     (c) 

Figure 4.9  X-ray images of simulated defects in the in-gate section of rough surface 

(Ra0) castings with (a) 0.5 mm (b) 0.7 mm, and (c) 1 mm holes 
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Broken 
Drill 

0.7 mm 1 mm 
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The surface roughness of the casting was varied by machining the peaks7 off 

the rough surface. 

 

 
Figure 4.10 shows the surface roughness variation on the in-gate section of 

the same casting section (F56 – Ford casting part serial number) for three different 

surface types. 

 

 
Figure 4.10a shows an un-machined section (Ra0). 

 

                                                 
7 Peak: According to Thomas [132] Peak is the highest point on the rough surface of the part 

which is above a selected reference level. 
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Figure 4.10b shows the same section with a partially machined surface (Ra1). 

It can be seen in this example, that the peaks of the rough surface have been 

removed, leaving a smooth surface finish, however, there are still as-cast surface 

regions remaining. 

 

 
Figure 4.10c shows the same section with a machined surface (Ra2) in which 

all of the as-cast surface regions have been removed. The values of each surface 

roughness range Ra2, Ra1 and Ra0 are given in Table 5.2.  
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Figure 4.10 Surface roughness variation on F56 casting section (a) as-cast trim 

pressed, (b) partially machined and (c) machined surface 

The surface roughness and topography were measured with the stylus 

instrument Perthometer S5P as shown in Figure 4.11. The experiments were carried 

out on castings with varying surface roughness using the ultrasonic inspection 

technique is described in Chapter 5.  

 

Roughness is independent of the sampling interval but depends on the high-

pass cut-off, while the slopes and curvatures are independent of the high-pass cut-off 

but depend on the sampling interval [135]. In the surface roughness measurement, 

correlation length is defined as the radial distance required for the area to be 

measured [136]. The amplitude parameters and those depending on the 

autocorrelation function are sensitive to long wavelengths, and texture and hybrid 

parameters are sensitive to sampling interval. Most machined surfaces tend to have a 

slight negative skew, because peaks are more easily removed than valleys [135]. The 

average roughness Ra is the arithmetic mean of all values of the roughness profile 

within the measured length. This parameter is the most effective surface roughness 

measure that is most commonly adopted in general engineering practice [137]. These 

surface roughness values provide a good general description of the height variations 

in the tested surface. A recent experimental study on the ultrasonic evaluation of 

surface roughness by Abdelhay and Mubark [137] used Ra values for assessment of 

surface roughness. All these surface measurements were carried out on 10 casting 

sections, each with between 5 and 10 side-drilled holes in them. Sample data 

obtained from the Perthometer instrument is presented in Table D.1 (Appendix D). 
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Figure 4.11 Perthometer –Surface profile measuring instrument 

 

Prior to commencing the inspection process, the initial parameters (inspection 

method and frequency) were determined using the backscattering method. An 

indirect method of measuring attenuation involves the observation of pulse echoes 

reflected to the source by backscattered signals, received from scattered reflections 

due to material variation such as surface roughness [22]. Guo et al. [138] observed 

the effects of backscattered noise in ultrasonic signals due to periodic surface 

roughness. In their work they presented the effects of backscattering, which can 

obscure flaw signals and place a fundamental limitation on the ability to detect flaws. 

They also carried out a numerical and experimental study on the decay of Back Wall 

Echo (BWE) due to the increase in surface roughness. The result proved that the 

larger the surface roughness, the higher the roughness induced noise in the signals. 

Larger surface roughness also leads to reduction of the BWE amplitude. 

 

 

4.5.4 Summary 

The inspection procedure described was used in the ultrasonic inspection of 

castings. The gas porosity type defects were simulated with side-drilled holes in the 
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castings. Simulated holes in the castings sections were inspected within the 

framework of variations in surface roughness of the castings to determine a suitable 

frequency for inspection. 

4.6 CALIBRATION & REPEATABILITY TESTS 

4.6.1 Overview 

The discussion so far has been in relation to effecting the ultrasonic 

inspection task itself, but in the overall preparation for an inspection, the calibration 

of instruments is also an important factor. The ultrasonic instrument set-up requires a 

range of calibration and sensitivity settings to be made according to given standards, 

using defined calibration blocks. Hence, calibration issues are addressed in this 

section. The calibration of equipment has to be carried out prior to commencing 

ultrasonic immersion testing and is essential for the PUMA robot and ultrasonic 

equipment used in the inspection of castings. These calibrations confirm the accuracy 

and repeatability of the test results. 

4.6.2 PUMA robot 

The calibration of the PUMA robot used in the immersion testing of 

components was carried out by moving the robot arm repeatedly to a particular point, 

to determine its repeatability. The variations in the co-ordinate values of the PUMA 

robot tool centre point were recorded using three dial-gauges for the three axes of 

movement (X, Y and Z) as shown in Figure 4.12.  
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Figure 4.12 Calibration set up of PUMA robot using dial indicators 

Figure 4.13 illustrates the positional repeatability of the PUMA robot. It 

indicates a robot repeatability of ± 0.02 mm at a particular position in the three 

directions. The variation (standard deviation) of the positional placement of the robot 

end effector was 0.01, 0.02 and 0.01 mm in the X, Y and Z axes, respectively. The 

positional variation of the PUMA robot at a particular location was substantially 

smaller than the smallest defect size (0.5 mm) to be detected in this research. Hence, 

from these experiments it could be concluded that the repeatability of the PUMA 

robot was within the limits for carrying out ultrasonic immersion testing. 
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Figure 4.13 Positional repeatability of PUMA robot 

4.6.3 A-scan Display Repeatability Tests 

The A-scan signal amplitude of the back wall echo (vertical linearity) was 

obtained to evaluate the repeatability of the EPOCH III ultrasonic equipment. The 

amplitude of the back wall echo signal was measured with reference to the Full 

Screen Height (FSH) of the A-scan display. These tests were carried out on a sample 

casting section without defect (C2) and another section with a gas porosity type 

defect (C5). The actual casting sections are illustrated in Appendix E. In this 

experiment, the ultrasound signal amplitude was obtained for 20 cycles, where for 

each cycle the ultrasonic probe was moved from an arbitrary external location to the 

measurement location. The back wall echo amplitude was measured relative to the 

FSH of the A-scan display as shown in Figure 4.14. It can be observed from the 

figure that there was a reduction in ultrasonic signal amplitude during one 

measurement cycle. This was due to the movement of the transducer out of the 

couplant medium (i.e., static water column as shown in Figure B.2, Appendix B) at 

the end of the particular inspection cycle. This action resulted in the formation of air 

bubbles at the tip of the transducer, leading to a decrease in the back wall echo 

amplitude. This phenomenon necessitated checking for the formation of air bubbles 

at the tip of the transducer during each immersion testing cycle. Otherwise, there was 

only a variation of 1 dB in amplitude for the remaining signals observed from both 

the defect and non-defect sections of the castings, as shown in Figure 4.14.  
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Figure 4.14 Repeatability test on the ultrasound equipment for the back-wall echo 

signals with C2 (without defect) and C5 (with defect) castings 

 

The maximum error that can be tolerated is a 1% deviation in the normal 

value of the ultrasonic signal amplitude [5]. Since in this case only ± 1 dB variation 

occurred in the experiments, measurement of the vertical linearity of the signal was 

kept under control.  

 

For this calibration procedure, it was necessary to set an appropriate signal 

gain for the amplification of the probe output signal. During the assessment of the 

vertical linearity, time-base readings were taken as the back wall echo was brought to 

a common amplitude (60 dB). This was done by increasing the electronic gain set up 

in the EPOCH III equipment to attain the same back wall echo amplitude. It is 

necessary to ensure that the gain value was not too high, such that the ultrasonic 

signals would saturate. Conversely, it is necessary to ensure that the gain value was 

not too low, such that low amplitude signals were undetected. A series of 

experiments were undertaken to evaluate an appropriate gain value on a selected 

range of sample casting sections, with varying surface roughness, both with and 

without defects. It was found that the gain of 60 dB for the EPOCH III equipment 

was suitable for majority of the castings. This gain value was used for all subsequent 

experimental work. 
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The same experimental conditions, in regard to the placement of casting 

sections, probe positional control and static water column, were used in all of the 

subsequent experiments carried out on casting sections. 

4.7 VALIDATION OF ULTRASONIC RESULTS 

Validation of results is important to ensure that NDT techniques produce 

reliable and repeatable results with an acceptable level of certainty. To qualify the 

procedures, extensive experimental work on test blocks is normally required. A large 

number of variables and possibilities have to be reduced to a limited group of 

statistically relevant NDT situations. In order to validate the ultrasonic inspection 

results, X-ray and Visual inspections have been used in this research. 

 

The results obtained from immersion testing were validated against the X-ray 

results obtained from radiographic inspection. Figure 4.15 illustrates the ultrasonic 

defect signal obtained from a sample part. An arrow mark in the figure also shows 

that the defect signal from ultrasound testing corresponds to the gas porosity defect 

in the X-ray image obtained from the same part, at the same location. From the 

ultrasonic signal it was determined that the approximate depth of the defect was 7 

mm from the front surface. 
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             (a)                                                          (b) 

Figure 4.15 Validation of results (a) X-ray image and (b) A-scan display 

of ultrasonic contact testing at the same location 

 

Visual inspection of the defect was carried out on the cut section of the 

castings after the ultrasonic and X-ray inspections were completed. Given the 

estimated location of the defect, the castings were cut into small sections at that 

location. Figure 4.16 illustrates a casting section containing a single gas porosity 

defect, where the distance between vertical lines is 1 mm. It can be seen that the 

distance between the defect and the front surface is approximately 7 mm. The results 

of this visual inspection indicated that it was possible to identify defects using 

ultrasonic inspection.  

 

 
Figure 4.16 A cut-section of gas porosity defect in the sample casting 
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Defect
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X-ray inspection was carried out to identify defective and non-defective 

sections of the castings. This information was required for the purpose of selecting 

appropriate ultrasonic parameters such as frequency (Section 5.5) and to train the 

neural networks (Section 6.3) to identify the defects. 

4.8 SUMMARY 

The methodology developed to carry out this research was based on the 

requirement to detect the gas porosity type defects in aluminium die castings. After 

suitable sample castings (structural oil sump pan and manual transmission case 

castings) were selected, the initial calibration of apparatus and equipment was carried 

out. The experimental set-up consisted of an ultrasonic flaw detector, immersion 

probes with different focal lengths in water, a water tank, calibration blocks, a probe 

holding device and a probe handling device. The X-ray and visual inspection 

methods were also described, and used for validating the results obtained from the 

ultrasonic immersion testing of castings. Suitable inspection parameters had to be 

identified to carry out successful experiments as described in the methodology. The 

following chapter presents the outcomes on the selection of suitable inspection 

parameters for ultrasonic inspection of aluminium die castings. 
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CHAPTER 5.  

 ULTRASONIC INSPECTION 

PARAMETERS 

5.1 OVERVIEW 

The experimental procedure adopted should ensure that the effects of 

ultrasound attenuation associated with the casting are minimised. This results in 

maximising signal amplitude from both the back surface and defect within the rough 

surface castings. In order to obtain the signals, experimental parameters had to be 

determined to carry out ultrasonic immersion testing on the selected sample die 

castings. These parameters were ultrasonic wave velocity in the casting material, 

water path distance and a suitable frequency for accommodating the structural 

variations in the castings. The major structural variations in the castings are grain 

size and surface roughness. As the signal-to-noise ratio is very important in 

quantifying sub-surface defects, the major factors relating to noise creation in the 

ultrasonic signal during ultrasonic immersion testing were identified and addressed 

as described in this chapter. The following sections describe the experiments 

performed to determine experimental parameters such as acoustic impedance, 

velocity of ultrasonic waves in aluminium alloy, frequency range and water path 

column distance. 
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5.2 ULTRASOUND VELOCITY IN MATERIAL 

The velocity of ultrasound in aluminium is 6320 m/s, but varies in different 

aluminium alloys [120]. The castings being investigated in this research are made of 

Al-Si alloy (chemical combination is presented in Table 4.1) which is a series 4 alloy 

[139]. The simplest method of measuring the velocity of ultrasound in a part of 

known thickness, using the pulse-echo method, is to measure the time between 

receipt of the front wall echo and the first back-wall echo [22]. The velocity of 

ultrasound can be calculated from the calibration of the time base of the ultrasonic 

screen as shown in Figure 3.1. In general terms, it can be noted that the velocity is 

independent of frequency and it can be interpreted in terms of the ratio of a modulus 

of density of the material [29]. Ultrasonic testing was carried out on defect free 

sections of manual transmission case sample castings to determine the reference 

velocity of ultrasound in order to avoid the variation in the material density. X-ray 

inspection was used to find the defect-free sections of the castings. Thereafter, the 

actual thickness of the casting was measured using a vernier calliper. The thickness 

at the measurement location was 8.0 mm, measured to an accuracy of ±0.1 mm.  

 

In order to ascertain the velocity of the ultrasound in the test material, the 

velocity as specified in the equipment was varied between 6200 – 6400 m/s and the 

thickness of the casting was determined using the EPOCH III flaw detector (Section 

4.4.3.2). Thereafter, the actual thickness of the casting was measured using a vernier 

calliper and compared with the thickness measurement obtained from the flaw 

detector for the velocity of ultrasound in the test material. A similar process has been 

described by Papadakis [53] on the operation of flaw detectors in determining the 

velocity of ultrasound in a specific material. 

 

After completion of the procedure described above two values of velocity of 

ultrasound in the material (6250 and 6270 m/s) were obtained. Thereafter, the 

velocity reading was varied in the equipment between 6250 m/s and 6270 m/s to 

determine the velocity reading which produced the maximum back wall echo signal 

amplitude. The maximum amplitude was found at a velocity of 6260 m/s, and this 

velocity reading was maintained throughout the inspection process. 
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5.3 ACOUSTIC IMPEDANCE 

In the next stage of the experimental program, ultrasonic immersion 

inspection was carried out on the same set of castings used in ultrasonic velocity 

measurement to determine the effect of acoustic impedance. The ultrasound signal 

was focused at the surface of the casting using a focus beam probe. A velocity of 

ultrasound in water of 1480 m/s [120] was used in these experiments. To ensure that 

the highest possible amplitude echo was obtained from the casting surface, the probe 

location and orientation were adjusted so that it remained perpendicular to the 

casting surface. Similarly, the ultrasound signal was focused on the back surface of 

the aluminium alloy casting to obtain the maximum amplitude with the previously 

selected velocity of 6260 m/s. for normal pulse-echo ultrasonic testing [140]. If there 

was a slight change or loss in the back wall echo amplitude due to misalignment of 

the probe it could lead to misinterpretation of signals received from castings with 

defects. The probe handling device was adjusted using the above procedure to ensure 

that the probe was approximately perpendicular to the front and back surface of the 

casting to obtain an ultrasonic signal with the maximum possible amplitude. 

 

In immersion ultrasound testing, the ultrasound travels from water (medium 

1) to the Aluminium alloy sample part (medium 2). In general, part of the incident 

ultrasound in medium 1 is reflected back along incident path and the remainder is 

transmitted through medium 2. The transmission loss (αt) of ultrasound [22] from 

medium 1 to medium 2 is calculated from the acoustic impedance as shown in 

Equation 5.1. 

 

αt   = 4 R1R2 / (R1+ R2) 2               (5.1) 

where  R1   = acoustic impedance of water = 1.5 * 106 kg/m2s 

 R2 = acoustic impedance of aluminium = 1.7 * 107 kg/m2s 

 

Substituting above values of R1 and R2 in Equation 5.1 resulted in αt being 

equal to 0.2989, which means approximately 30% of the incident beam was 

transmitted into the smooth surface material and remaining 70% was reflected back 
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from the surface [120]. However, in this research the sample castings had rough 

surfaces which would result in further loss in the ultrasonic signal transmitted into 

the casting. A detailed discussion on the loss of ultrasonic signal due to the effect of 

a rough surface is presented in Section 5.6.5. 

5.4 WATER PATH DISTANCE 

As shown in Figure 5.1, the lens in the probe focuses the sound energy into a 

small and narrow beam. The velocity of sound in water is about a quarter of that in 

aluminium or steel parts. The distance between the probe and the part (sample 

casting) is called the water path (WP) distance. The WP distance [116] is obtained 

from Equation 5.2. 

 

WP  = F - 
⎥
⎥
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⎤

⎢
⎢
⎣
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w

m

V
VMD              (5.2) 

where  

F    = Focal length in water (mm)   

MD = Material Depth (mm) 

Vm = Velocity of ultrasound in material = 6260 m/s, and 

Vw = Velocity of ultrasound in water = 1480 m/s 

 

Ultrasonic immersion testing was carried out on the castings using the 

experimental rig (as described in Chapter 4). Experiments were carried out with 

ultrasonic immersion probes with frequencies of 10 and 20 MHz and a focal point of 

25.4 mm in water. These experiments were used for determining the optimum water 

path distance to focus the ultrasonic beam approximately 4.5 mm (material depth) 

from the front surface of the casting. It was important to inspect the castings to a 

depth of 4.5 mm in this research. 
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    Figure 5.1 Immersion transducer sound path [116] 

Ultrasonic testing was carried out at sixty different locations on selected 

castings without defects to obtain a suitable back wall echo. The castings were 

selected for these experiments as described in Section 5.2 (i.e. castings were selected 

according to the X-ray analysis). The mean percentage Back Wall Echo (BWE) of 

the Full Screen Height (FSH) amplitude signal obtained at different sections of the 

sample castings without defects is plotted in Figure 5.2. The maximum BWE 

amplitudes (85%) were obtained at a probe frequency of 10 MHz and 7.5 mm WP 

distance. In this instance the remaining 15% of BWE was lost due to the effects of 

grain size variation and surface roughness. These material variations are discussed in 

Section 5.5. 

 

 From the graph, it is evident that at 10 MHz and 7.5 mm water column 

distance the maximum BWE amplitude was achieved compared with BWE 

amplitude achieved with a 20 MHz frequency probe at different water path distances. 

The numerical water path distance value was calculated using Equation 5.2 to focus 

at the material depth (MD) of 4.5 mm inside the 8 mm casting section. As mentioned 

in Chapter 1, the first few millimetres below the front surface were considered to be 

the most critical for these casting sections. A distance of 4.5 mm was chosen such 
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that the majority of relevant defects would be identified. Then, substituting the MD 

value along with focal point of 25.4 mm in water for a 10 MHz probe gives the water 

path distance of 7.4 mm. The water path distance obtained from the experiment (7.5 

mm) and from the Equation 5.2 (7.4 mm) was almost equal. After these initial 

experiments, a water path distance of 7.5 mm was selected to carry out further 

experiments in this research. Once the velocity of ultrasound in the material and 

water path distance were determined, the effects of material variation on the 

ultrasonic signal amplitude at different probe frequencies were measured. 

Figure 5.2 Optimisation of water path distance and probe frequency 

5.5 PROBE FREQUENCY SELECTION 

5.5.1 Overview 

The aim of this section is to describe the development of a method to identify 

a suitable frequency for inspecting the castings. The selected frequency has to 

accommodate the varying material properties of aluminium die castings. 

0

20

40

60

80

100

5 7.5 10 12.5 15 17.5

Water column distance (mm)

%
 B

W
E

 M
ea

su
re

m
en

t o
f F

ul
l S

cr
ee

n 
H

ei
gh

t 

10 MHz
20 MHz



 
CHAPTER 5. ULTRASONIC INSPECTION PARAMETERS 

 

111 

5.5.2 Total Attenuation Loss 

According to Adler et al. [64] the total attenuation (L) in a casting consists of 

separate components as listed in Equation 5.3. 

 

L = LImp + LDiff + LGrain + LSurf + Lp               (5.3) 

 

where LImp is the double transmission loss at the water and casting interface in 

ultrasonic immersion testing; LDiff is the loss due to ultrasonic beam spread as it 

propagates back and forth within the castings; LGrain is the loss due to grain size 

variation; LSurf is the loss due to casting surface roughness and Lp is the loss due to 

porosity [64]. The research by Adler et al. [64]  focused on calculating the porosity-

induced attenuation and attenuation due to grain size variation and surface roughness 

[64]. These factors are important in evaluating casting quality using ultrasonic 

testing. In the current research, the focus was to evaluate the attenuation due to 

surface roughness and grain size variation. To achieve this, it was necessary to 

eliminate the factors of LImp, LDiff and Lp.  

 

After the initial parameters such as velocity and water column distance were 

obtained, experiments were carried out on the castings to determine the influence of 

LImp and LDiff as a function of frequency.  

 

Experiments were conducted to find the attenuation due to ultrasonic beam 

spread as it propagates back and forth within the castings (LDiff). The application of 

the focused probe reduced the effect of beam spread in comparison to an un-focused 

probe [70]. The front surface echo was measured by focusing the transducer (10 

MHz and 25.4 mm focus probe) on the smooth front surface of the casting (Figure 

5.3a). Similarly, the back wall echo was recorded with the transducer focused on the 

smooth back surface (Figure 5.3b). There was a loss of the ultrasonic signal 

amplitude due to multiple reflections in the material. The attenuation due to LDiff was 

considered negligible in this research as the signal analysis was carried out up to the 

first back surface signal only. Hence, the effect of multiple reflections within the 

material was not relevant. 
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(a)                         (b) 

Figure 5.3 Beam profile as the transducer focused on (a) the front and (b) the 

back surface of the sample casting [141]                                    

Another key factor was the difference in acoustic impedance at the water-

aluminium interface that resulted in nearly 70% of the ultrasonic energy being 

reflected away from the material (refer Section 5.3). LImp is generally constant at any 

frequency due to the fact that there is no variation of the acoustic impedance in water 

and aluminium (as a function of frequency). This is due to the fact that the acoustic 

impedance is a function of velocity and density, which is a function of material 

properties and it is constant for any given probe frequency [22]. Velocity is generally 

constant for any applied frequency on a given material [5]. The total change of 

attenuation in the ultrasonic signal at different frequencies can be calculated by 

summing the changes in different parameters as shown in Equation 5.4a: 

 

PSurfGrainDiff Imp LLLLLL Δ+Δ+Δ+Δ+Δ=Δ            (5.4a) 

)( PSurfGrain LLLL ++Δ=Δ , if 0 Imp ≅ΔL  and 0Diff ≅ΔL                          (5.4b)  

 

From the above findings it is determined that the ΔLDiff and ΔLImp terms are 

negligible and eliminated from Equation 5.4a giving Equation 5.5.  

 

ΔL = ΔLGrain + ΔLSurf + ΔLp                          (5.5) 

 

Focus Probe 

Focus Probe 

Sample Casting Sample Casting 
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Specifically, investigations were carried out to determine the difference in 

attenuation (ΔL) between the selected sample castings due to material variations. 

Further experiments were conducted with several smooth surface casting sections 

without defects. The X-ray inspection method was used to identify the defect-free 

sections of castings (Section 4.7). Hence for these defect free sections of castings, the 

total change in attenuation (ΔL) was only due to sum of the change in LGrain and LSurf 

without the contribution of porosity defect induced attenuation (ΔLp). Thus Equation 

5.5 reduces to Equation 5.6: 

 

ΔL = ΔLGrain + ΔLSurf                 (5.6) 

 

Finally, the sample castings for this investigation were selected with varying 

material features in relation to grain size and surface roughness. The grain structure 

of the material to be inspected posed a serious problem for ultrasonic inspection. The 

larger size of the grains in relation to the wavelength of ultrasound led to an increase 

in the noise level. This fact necessitated separate in-depth studies of the effects of 

grain size and surface roughness variations on total attenuation of the ultrasonic 

signal.  

 

 

5.5.3 Geometry 

The geometry of the part determines the ability of the ultrasonic beam to 

access the defects. It also determines the choice of modes for inspection. At the 

critical sections of the selected sample castings, the thickness of the part did not have 

any major variations. However, both sides of the casting are not normally accessible 

for castings considered in this research for through transmission ultrasonic 

inspection. Hence, the pulse-echo method of ultrasonic inspection was used due to 

geometrical constraints. 
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5.5.4 Grain Size 

The intensity of ultrasonic waves passing through the aluminium material is 

reduced due to scattering at the grain boundaries within the material [29]. Grain size 

measurements were taken on the sample parts and correlated with the ultrasonic 

signal amplitude at different frequencies in the range of 2.25 to 20 MHz. Castings 

were sectioned by the standard cutting method as described in the Metals Handbook 

[142]. Roland [143] discussed at length the grain size and porosity measurement 

techniques for cast light metal alloys, and a similar procedure for the grain size 

measurement has been applied in this research.  

 

In this research, the grain size type (fine, medium or coarse grain) was 

determined using the following process: 

1.  The samples were polished by mechanical means to a high polish grade 

2.  The samples were anodised in a solution made of 6 ml Hydrofluoroboric acid 

(HBF4), 6 ml of Hydrofluoric acid (HF), 144 ml Ethanol and 444 ml H20 at potential 

of 30 volts for 2 minutes.  

3.  The anodised samples were examined under polarised light. The separate 

grains were clearly distinguished by colour variations (purples, blue, yellow, red, 

brown, etc) indicating different crystallographic orientations as seen in Figure 5.4.  

 

The average grain size was then measured using the linear intercept method 

[71], in which the distance between the centres of two adjacent grains were measured 

to give an indication of the grain size present in the casting.  
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Figure 5.4 Microstructure of CA313 aluminium alloy showing different grain 

orientation at the in-gate section of the casting 

 

After ultrasonic inspection was carried out on the in-gate casting sections, a 

number of polished samples were obtained from those sections. Then, the grain size 

values were obtained by analysing a total of 60 randomly selected areas in the 

polished samples. The grain size measurement values ranged between 0.1 to 1.2 mm. 

They were grouped into three grain structures as shown in Table 5.1 depending on 

their grain size and dendrite arm spacing range. The values were determined as 

mentioned above from the metallographically prepared specimens. The grouping of 

grains by size enabled the investigation of the effects of the different grain size on 

ultrasonic signal amplitude [71]. For each of the measurement areas, the line 

intercept method was used to measure the distance between two adjacent dendrite 

arm spacing and width. This is illustrated by the double headed arrow marks shown 

in Figure 5.5.  
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Sample Casting Grain 

Structure  

Grain Size  (mm) Dendrite arm spacing 

range (μm) 

Fine  0.1- 0.25 10-30 

Medium  0.26 – 0.50 31-50 

Coarse   > 0.50  51-100 

 

Table 5.1 Three grain structures of sample castings  

 

Most of the castings under investigation consisted of fine to medium sized 

grains, typical of the high-pressure die casting process in which molten metal 

solidifies in seconds. It was found that coarse grains were rarely present, and always 

at the sections with varying thickness (baffle area of the in-gate section) due to 

slower solidification rates at those sections. The medium grain size was located near 

the area adjacent to the baffle area of the in-gate casting section. The reason for this 

was due to the uniform solidification rate and constant in-gate thickness apart from 

the baffle area.  

 

Further, it was found that the grain size values were relatively consistent for 

each sample. For instance, those samples selected from regions away from the baffle 

area only had grain size values within the fine grain structure range (0 to 0.25 mm), 

and those samples selected from the baffle area regions only had grain size values 

within the coarse grain structure range (> 0.5 mm). 



 
CHAPTER 5. ULTRASONIC INSPECTION PARAMETERS 

 

117 

 

Figure 5.5 A typical microstructure of CA313 aluminium alloy casting  

Experiments were carried out on surfaces with a roughness value (Ra) less 

than 5 μm for 8 mm thickness casting sections at the defect-free areas. In these 

experiments only smooth machined surfaces (Ra < 5 μm) were used for studying the 

effect of grain size variation, using the selected frequency range of 2.25 MHz to 20 

MHz. Regardless of the frequency within this range, the wavelength of the ultrasonic 

signal was significantly larger than the surface roughness. For instance, the smallest 

wavelength (λ = 0.3 mm), corresponding to the frequency of 20 MHz, was 

significantly larger than the surface roughness (Ra = 5 μm). Therefore, for all 

frequencies within this range, the attenuation due to surface roughness was 

considered to be negligible (LSurf ≈ 0). From this, the change in attenuation due to 

surface roughness as a function of frequency was also considered to be negligible 

(ΔLSurf ≈ 0). Therefore, Equation 5.6 can be further simplified to Equation 5.7, and it 

can be seen that the change in attenuation (ΔL) is only caused by grain size variation 

(for the smooth surface castings in this section).  

 

ΔL = ΔLGrain                  (5.7) 
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The relationship between back wall echo amplitude and probe frequency for 

different grain structures is described in Figure 5.6. As can be seen in Figure 5.6, as 

the frequency increased, the BWE for a given grain size generally decreased. 

However, it can also be seen that for all grain size types that there was a decrease in 

BWE amplitude for the 2.25 MHz probe compared to the 5 MHz probe. A possible 

reason for this is the particular probe types used. The 2.25 MHz probe was the only 

unfocused probe used in this experiment, and the un-focused nature of the beam may 

have lead to more scattering and higher beam spread within the material when 

compared to the focused probe [67]. 

 

A further finding of this analysis was that an increase in grain size resulted in 

a decrease in BWE amplitude. For instance, a 10% loss in BWE amplitude was 

observed between fine and medium grain size as compared to a nearly 50% (i.e., 

equal to 6 dB drop) loss between the fine and coarse grain structure. This was due to 

multiple scatter happening at coarse grain structure. Similarly, the standard deviation 

of ultrasonic signal amplitude was larger for coarse grain structure compared to 

medium and fine grain structure. The standard deviation was obtained when 5 

measurements were obtained for different grain structures at a particular frequency. 

The high standard deviation values were obtained for high frequencies (15 MHz and 

20 MHz) compared to frequencies up to 10 MHz. The 5 MHz focused probe attained 

the maximum BWE amplitude in relation to all other frequencies for all the grain 

sizes. As a result of these experiments, it could be concluded that frequencies up to 

10 MHz would provide higher amplitude BWE compared to high frequencies. 

Hence, the frequency range of 5 MHz to 10 MHz was selected as the most suitable 

for inspecting the die castings considered in this research. 
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Figure 5.6 Variation of BWE and probe frequencies for different grain sizes 

The described experiments enabled the identification of the effect of grain 

size variation on ultrasonic back wall echo signals. Further experiments were carried 

out on casting sections with fine grain structure to investigate the effects of surface 

roughness on the ultrasonic signals. 

 

 

5.5.5 Surface Roughness 

Surface roughness affects the resolution and sensitivity of ultrasonic signals 

in the same manner as the grain structure does [5]. A spreading out of the front 

surface echo due to the rough surface causes the loss of resolving power in the 

ultrasonic signal. This is seen as a wide front surface echo on the oscilloscope and is 

caused by reflection of the transducer side lobe energy. Side lobe energy is normally 

not reflected back into the transducer from smooth surfaces. This condition masks 

the discontinuity below the surface. Widening of the beam due to scatter from the 

rough surface leads to the requirement for a lower frequency to reduce scatter. 

Ultrasonic signals obtained from both smooth and rough surfaces are illustrated in 

Figures 7.3 and 7.4 (Section 7.2). 
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In this work, ultrasonic immersion testing experiments were conducted with 

castings having different surface roughness values. The literature review (Section 

2.5.3) indicated that past investigations have been confined to castings with 

roughness values (Ra) less than 50 μm [54, 64, and 65]. However, most of the 

castings analysed in this work had surface roughness values varying between 50 μm 

and 150 μm. The back wall echo (BWE) was evaluated as a function of surface 

roughness and incident frequency. The measurement of BWE amplitude provides the 

in-direct measurement of attenuation due to surface roughness when the BWEs of the 

rough and smooth surface castings are compared i.e., with and without attenuation 

respectively [5]. The roughness on the rear side (back surface) of the casting was 

ignored because surface roughness Ra in this region was less than 5 μm. It was not 

considered as a factor in the loss of BWE amplitude.  

 

The major reason for studying the effect of BWE compared to the effect of 

Front Wall Echo (FWE) was due to the fact that there is a significant loss of 

amplitude and presence of multiple FWEs for castings with increased surface 

roughness (above 50 μm). In the earlier studies, Adler et al. [64] and Ambardar et al. 

[65] measured both FWE and BWE amplitudes to investigate the effects of surface 

roughness on ultrasonic echo amplitude in aluminium alloy castings. Their 

measurements involved castings with surface roughness less than 50 μm. However, 

in this research surface roughness above 50 μm was investigated and it had a 

significant effect on the FWE amplitude. Hence only the BWE amplitude was 

measured to study the effect of varying surface roughness on ultrasonic signal 

amplitude. 

 

Further experiments were confined to sections of the castings with a thickness 

of 8 mm and with fine grain structure. The surfaces of the castings were machined 

such that roughness values (Ra) varied from 150 μm (rough) to less than 10 μm 

(smooth). As mentioned in Section 5.5.4, it was found that the grain size was 

relatively consistent throughout each section (i.e., for the fine grain structure, all 

grain size values were within the range of 0 to 0.25 mm). Since there was only a 

small variation in grain size within the sections inspected, the change in attenuation 



 
CHAPTER 5. ULTRASONIC INSPECTION PARAMETERS 

 

121 

due to grain size variation was considered to be negligible. Therefore, ΔLGrain ≈ 0, 

and then Equation 5.6 is reduced to Equation 5.8. 

 

ΔL = ΔLSurf                  (5.8)  

 

The results of the effects of surface roughness on the ultrasonic signals are 

presented in Figure 5.7. A series of back wall echo amplitude measurements was 

carried out to assess the effects of surface roughness and frequency on attenuation. 

Figure 5.7 shows that detection of the BWE for castings with surface roughness (Ra) 

values in the region of 150 μm, with any of the selected frequencies, would be 

difficult. This was due to the ultrasonic signal scattering at the rough front surface. 

The unfocused probe of 2.25 MHz frequency was not considered for further 

experiments. The reason for this was due to a general increase in loss from scattering 

of ultrasonic waves from the front surface. In particular, it can be seen in Figure 5.7 

that for the surface roughness range between 50 and 125 μm, the loss of signal 

amplitude when using the 2.25 MHz probe was significantly greater than with the 5, 

7.5 and 10 MHz probes. As stated earlier, a possible reason for the decrease in BWE 

amplitude with the increase in surface roughness for the 2.25 MHz probe may be due 

to the un-focused nature of the probe. For instance, it was shown in a previous study 

on unfocused probes, that the measurement of the BWE amplitude was generally 

reduced compared to focused probes, on parts with large surface roughness [70]. 
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Figure 5.7 BWE amplitude variation with surface roughness for different 

frequencies 

 

Nearly 95% of the signal was scattered from the surface of the castings with 

150 μm roughness value for the selected frequency range. The lower frequencies up 

to 10 MHz provided a larger BWE than higher frequencies (15 MHz and 20 MHz) 

for surface roughness values up to 100 μm. There was no BWE signal obtained from 

the castings with surface roughness values beyond 125 μm for the 20 MHz frequency 

probe. This was due to significant scattering of ultrasonic waves at the front surface 

of the castings. 

 

The frequency range from 5 to 10 MHz was most suitable for inspection of 

castings with surface roughness (Ra) values varying between 50 μm and 100 μm. To 

study in detail the effect of surface roughness on the ultrasonic signals obtained from 

the castings with defects, the surface roughness was varied from an original rough 

surface (around 150 μm) to a machined smooth surface (around 5 μm). The results of 

this study are presented in Section 7.2.  
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Sample surface roughness data obtained from a Perthometer –Surface profile 

measuring instrument (Figure 4.11) is presented in Appendix D (Table D.1) for 

smooth surface (Ra2) type. Due to the large variation in the mean surface roughness 

values, the surface roughness of castings was grouped into three categories as shown 

in Table 5.2.  

 

Range Surface Roughness Values (Ra) 

Ra0 101 to 150 μm 

Ra1 51 to 100 μm 

Ra2  5 to 50 μm 

 

Table 5.2 Surface roughness range 

 

Finally, the decision on the selection of a suitable ultrasonic frequency to 

inspect aluminium die castings depends on the discontinuities to be detected. Since 

the detectable minimum size of the defect depends on the wavelength of the 

ultrasonic signal, the frequency of the probe required to inspect these castings should 

be selected based on the critical defect size to be inspected. The frequency selected is 

also constrained to be in the range previously determined by the experiments 

described in this section and illustrated in Figure 5.7. 

5.6 SUMMARY 

The effects of material variation on ultrasound signals in inspecting selected 

die castings of type alloy CA313 were identified and quantified with the experiments 

described previously. The major conclusions that can be drawn from the experiments 

are: 

• The ultrasonic velocity in the castings investigated was found to be 6260 m/s  

• A 10% loss in back wall echo was observed between casting sections with 

fine to medium grain size, as compared to nearly 50% (6 dB drop) loss 
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between castings with fine and coarse grain structure due to grain boundary 

scattering (Figure 5.6) 

• The frequency range from 5 to 10 MHz was most suitable for inspection of 

aluminium die castings with surface roughness (Ra) values varying between 

50 μm and 100 μm (Figure 5.7), and 

• The grain size in high pressure automotive die castings is mostly uniform and 

in the range of fine to medium grain size. Hence, the loss of back wall echo 

due to grain size variation is small, and less than that caused by changes in 

the surface roughness.  

 

The in-gate section of the structural oil sump pan was the critical part of the 

casting in relation to the ultrasonic inspection task addressed in this research. So the 

frequency range for further investigation was selected primarily to accommodate 

signal variation caused by surface roughness at the in-gate section. The experimental 

results were used as a framework in developing an inspection procedure for 

aluminium alloy die castings. This procedure also provided guidelines for selecting 

suitable transducer frequencies that accommodate variations in material properties 

while taking into account the critical defect size to be detected. In order to do this, 

weak and noisy ultrasonic signals have to be subjected to further signal processing. 

Suitable signal processing procedures have to be developed to achieve the highest 

possible defect identification rates. These procedures are described in Chapter 6. 
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CHAPTER 6.  

ULTRASONIC DATA PROCESSING 

6.1 OVERVIEW   

The previous chapter described the selection of parameters for ultrasonic 

immersion testing of aluminium castings. However, the processing of ultrasonic 

signals obtained from immersion testing of the castings was not straight-forward. 

There are many material parameters that affect ultrasonic signals. Even though a 

suitable frequency was selected, due to the noise generated within the ultrasonic 

signals particularly with rough surface castings it was difficult to identify defects. 

Therefore, there was a requirement for signal processing to aid the process of 

classifying the ultrasonic signals. The detection of discontinuities in aluminium alloy 

die castings using an ultrasonic non-destructive testing method in the final analysis is 

a classical problem of signal processing. 

 

The aim of this chapter is to report and discuss the processing of ultrasonic 

signals. The flowchart on the data processing methodology is presented in Section 

6.2 along with the data collection procedure. Processing of signals using Artificial 

Neural Networks, and signal pre-processing is investigated in order to develop a 

novel approach to ultrasonic data processing. This investigation is described in this 

chapter. Selection of neural network parameters and signal pre-processing 

methodologies are described in Section 6.3. Finally, the application of combined pre-

processing methods is described in Section 6.6.  
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6.2 DATA COLLECTION AND PROCESSING METHODOLOGY 

In this work, ultrasonic immersion testing experiments were conducted with 

castings having different surface roughness values, which were in the range of Ra0, 

Ra1 and Ra2 types (Section 5.5.5). The ultrasonic inspection parameters such as 

ultrasonic velocity in CA313 alloy (6260 m/sec), suitable water path distance (7.5 

mm), and probe frequency (10 MHz) were applied in these experiments as presented 

in Chapter 5. The ultrasonic immersion testing procedure used in this research is 

described in Chapter 4 (Section 4.4.3).  

 

The overall steps involved in converting the output ultrasonic A-scan file type 

into an input signal processing file type is presented in Appendix F. Signal 

processing was subsequently carried out using MATLAB software version 6.1. 

Finally, the classification of ultrasonic signals was done using Artificial Neural 

Networks (ANN). The training of ANN plays a crucial role in signal processing. It 

involves the following steps [91]: 

• Assemble the training data 

• Create the network object  

• Train the network and 

• Test the network. 

 

In Table 6.1, the number of signals obtained from simulated defects (side-

drilled holes), natural defects (gas porosity) and mixed defects, i.e. the combination 

of both side-drilled holes and gas porosity signal types is presented. In addition to 

those signals, 80 non-defect signals were also obtained from Ra0, Ra1 and Ra2 

surface types for defect and no-defect type classification with ANN. X-ray inspection 

was used to find the defect-free sections of the castings (Section 4.7). Out of 80 non-

defect signals obtained, 50 were used for training and 30 for testing. In total, 130 

defective signals were obtained from each surface type (Ra0, Ra1 and Ra2). A 

detailed description on the simulated defects was provided in Section 4.5.2, the size 

and location of the simulated defects within the casting section was such that they 

were as closely matched to the natural defects as possible. As described in this 

chapter only ultrasonic signals obtained from the simulated defects were used to 
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select the suitable signal processing parameters. However, the ultrasonic signal 

classification results presented in the Section 7.5 (Chapter 7) onwards were obtained 

from natural defects. The training and testing signals for the neural network 

implementation were kept separately in different folders in the signal database. 

 

Neural Network 

Process 

Number of 

Simulated Defect 

Signals 

Number of 

Natural Defect 

Signals 

Number of 

Mixed Defect 

Signals 

Training  50 30 80 

Testing 30 20 50 

Table 6.1 Number of training and testing data for different signal types 

The size of natural defects (gas porosity defects) varied between 0.5 mm to 2 

mm. X-ray inspection of the castings with defects provided information on the 

approximate location and size of the natural defects. Those defects were un-evenly 

distributed along the in-gate section of the structural oil sump pan castings, which 

were manufactured in three high-pressure die casting machines in the casting plant. 

However, the casting sections with defects which were similar to the simulated 

defects (in location) as identified by X-ray inspection (Section 4.7) were used in this 

research. 

 

The real-time ultrasonic signal provides very valuable information for signal 

processing. Figure 6.1 illustrates the major steps involved in signal processing. The 

signals were collected through an ultrasonic probe suitable for the die castings 

investigated in this research. Then, the measured values were sent to the digital 

measurement device, Epoch III. The data was converted in to M-file for MATLAB 

neural network application (Appendix F). The data collected from all transducers 

were divided into two parts; training data and testing data. In other words, data used 

to train the neural networks were not used for testing. 
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Figure 6.1 Block diagram of ultrasonic measurement system  

Figure 6.2 illustrates the surface plot of Ra0 training data input to the neural 

network, where the x-axis is the number of samples, y-axis is the number of signals 

(50 for the training set), and z-axis is the amplitude of each sample signal (in dB). It 

can be observed from Figure 6.2 that the signals were scattered and the location of 

Front Wall Echo (Orange colour rectangle) was randomly present in the plot and the 

Back Wall Echo (Grey colour rectangle) was also scattered at the end of the plot. 

These values were obtained by transferring all data signals into a single matrix ‘M’ 

as explained in Appendix F (Figure F.2). The plot of matrix ‘M’ has illustrated the 

Analog measurement 
device (transducer) 

Data Conversion and File 
Storage (Database) 

Signal Data Processing 
(MATLAB software) 

Mixed Analog/Digital 
Signal (Epoch III) 
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variation in the signal echo amplitude due to the surface roughness of the casting. It 

has also shown the need for a suitable signal processing method to detect the defect 

echo in the weak ultrasonic signals. The dimensions of the matrix containing the 

training and testing data used in the experiments were of 220 x 80 and 220 x 50 size 

matrices respectively, since one input signal consists of a 220 x 1 array. 

          
Figure 6.2 Surface plot of Ra0 training data 

 

The value of the data processing steps in this ultrasonic NDT&E exercise was 

mainly two-fold, namely, identification and classification. An important factor in the 

data processing was the enhancement of the signal-to-noise ratio. To achieve this, 

unwanted components of the signal, relating to scattering from the rough surface and 

grain boundaries of the casting were to be separated from the signal. The different 

signal pre-processing techniques (i.e. FFT, PCA and WT) described in Section 2.7.3 

were used in pre-processing the ultrasonic signal data. The procedures involved in 

using these pre-processing techniques are explained in Section 6.5. The MATLAB 

program written to carry the ultrasonic signal pre-processing and classification is 

presented in Appendix G. 
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6.3 SELECTION OF NEURAL NETWORK PARAMETERS 

6.3.1 Overview 

Different ANNs have different computation and storage requirements, and no 

one algorithm is best suited to one type of problem. Normally, the number of inputs 

to the network is constrained by the problem, and the number of neurons in the 

output layer is constrained by the number of outputs required from the network. In 

this research, the outputs ‘0’ and ‘1’ represented the ‘no-defect’ and ‘defect’ 

categories respectively.  

 

Care has to be taken in the selection of parameters such as number of epochs 

and number of hidden layer neurons, as there could be the risk of over-fitting to the 

training data set. Incorrect selection of parameters would lead to the network 

performing poorly on a new data set. To avoid the problem of over-fitting, trial runs 

(iterations) were conducted to determine a suitable number of epochs and number of 

neurons in the hidden layer as presented in Section 6.3.4 and Section 6.3.5 

respectively. These selection processes were carried out on the signals obtained from 

rough surface sections of the castings (as-cast surface) with and without simulated 

defects. To determine the effect of each parameter, the characterisation rate of the 

neural network was evaluated by varying one parameter at a time, and the remaining 

parameters were kept constant, as presented in this section. For each of these 

experiments, the MATLAB ‘init’ function was applied to initialise the network 

weights (as described in Section 3.8.3).  

 

 

6.3.2 Transfer Function 

Sigmoid units (logsig and tansig transfer functions) were selected based on 

the connections that determine the influencing neuron. An experiment was 

undertaken to evaluate the most appropriate combination of the non-linear transfer 

functions of logsig (L) and tansig (T) for the three layers of the feed-forward network 

used in this research. The classification percentage and standard deviation (SD) were 
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calculated for the different types of transfer function combinations as presented in 

Table 6.2. For instance, TTT (in Table 6.2) represents the application of transfer 

function tansig (T) in each layer of the neural network respectively. The different 

types of transfer function combinations were applied in a loop 50 times to obtain the 

mean classification percentage and standard deviation. The transfer function 

combination of TLT was selected, as it performed best with raw input signals 

obtained from rough surface castings (Table 6.2). Further, signal processing required 

for this research was carried out with the transfer function combination of TLT. 

 

Transfer Function Types Mean Classification (%) SD (%) 

TTT 61.3 7.3 

TTL 56.6 7.1 

TLL 56.0 8.3 

LLL  61.0 6.6 

LLT 60.7 5.6 

LTT 62.0 8.7 

TLT 62.7 3.3 

LTL 59.3 9.3 

 

Table 6.2 Classification % and SD of different transfer function combinations 

 

 

6.3.3 Training Algorithm 

The scaled conjugate gradient (SCG) method was selected as the training 

algorithm in this neural network application due to its advantage over other methods 

as presented in Section 3.7.6. The training parameters for trainscg (MATLAB 

function for SCG) are epochs, show, goal, time, min_grad, max_fail, sigma and 

lambda. The number of epochs required for training is presented in Section 6.3.4. 

The show was set to 20, so after each 20 epochs training status was displayed to see 

the progress made by the training algorithm. If show is set to 0, then the training 

status never displays the output. The maximum time taken to train the network is set 

by the time function. However, the time factor is not considered to be too critical in 
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this defect classification application. The performance goal is a critical factor in 

determining when the training stops. The training is stopped when the performance 

function goes below goal. Normally, a value equal to zero or close to zero is selected 

as the goal. A very small goal value such as 1e-5 and 1e-6 will mean that the network 

takes a longer time to converge. In this case, goal was selected such that it was close 

to zero but not a very small value, 0.001 was used as the goal. The SCG algorithm 

does not have any affect on the learning rate and momentum parameter values.    

  

 

6.3.4 Number of Epochs 

The selection process in terms of number of epochs used in training the 

network is critical for generalisation of the network. During training for each epoch, 

an input data set is submitted to the network, then target and actual output values are 

compared and error value is calculated. The calculated error is the difference 

between the target output and the network output. The network will tend to minimize 

the average of the sum of these errors (mean square error). This error value is used in 

a transfer function (Section 3.7.2) to calculate the new weights for the next training 

epoch. Random weights are used in the initial network configuration and weights are 

adjusted continuously during the training process. Training stops when a given 

number of epochs elapse, when the error reaches an acceptable level, or when the 

error value is minimised [91]. Basically, if the number of epochs is not correctly 

selected it can result in a neural network that is not optimised or one that does not 

produce generalised results. 

 

The signals obtained from the rough surface section of castings with and 

without simulated defects were selected for the experiments to choose the number of 

epochs. When the number of epochs was increased in neural network training, the 

ultrasonic signal classification percentage increased (Figure 6.3). This can be 

attributed to the increase in the overall training inputs to the network. However, it 

was important that the network should not be over-trained. At approximately 500 

epochs the mean square error value reached a minimum value. After 500 epochs, the 

mean square value increased and classification percentage decreased. Hence, 500 
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epochs were selected based on the maximum classification level and minimum mean 

square error value (as shown by double-headed arrow in Figure 6.3).  
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Figure 6.3 Effect of number of epochs on the percentage classification and Mean 

Square Error  

 

6.3.5 Number of Hidden Layer Neurons 

The number of neurons in the output layer is determined by the nature of the 

problem. Determination of the number of neurons for the hidden layer is often 

accomplished through experimentation [144]. A small number of neurons in the 

hidden layer may prevent correct mapping of inputs to outputs, while too many may 

allow the network to over-classify the training patterns reducing generalisation 

capability [145]. It would also increase the training time, which is unacceptable for 

an on-line inspection process. Several differently sized neural networks were 

designed and tested in order to determine the smallest usable structure. Figure 6.4 

illustrates the classification performance of neural network configurations based on 

various combinations of input and hidden layer neurons. It also indicates a general 
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random variation in classification performance for network configurations with an 

increasing number of hidden layer neurons.  
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Figure 6.4 Effect of hidden and input layer neurons on classification percentage 

Figure 6.4 illustrates that the highest classification was obtained for neural 

network configurations containing the combination of 20-10 and 120-60 neurons in 

the input - hidden layers, respectively. The 20-10 network configuration was selected 

due to its smaller size and low standard deviation (SD) of classification percentage. It 

was observed that the inclusion of an additional layer did not improve the network 

performance. In conclusion, the network selected for ultrasonic signal classification 

contained 20, 10 and 1 neurons in the first, hidden and output layers respectively. 

 

In summary, the selected neural network topology had 220 inputs 

representing the ultrasonic A-scan signal, and one output to determine whether the 

signal represented a defect or not. The outputs ‘0’ and ‘1’ represented the ‘no-defect’ 

and ‘defect’ categories respectively. The selected parameters are listed in Table 6.3. 

The learning rate (Section 6.4.2), momentum term rate and error goal were fixed 
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throughout the training and testing phase since they did not have any effect on the 

final outcome of the neural network with SCG training function (Section 6.3.3). 

 

 Parameters Value 

Number of input nodes 220 

Number of layers 3 

Number of neurons in input layer 20 

Number of neurons in hidden layer 10 

Number of neurons in output layer 1 

Show 20 

Epochs 500 

Goal 0.001 

Activation Function TLT 

 

Table 6.3 Feed-forward back propagation neural network parameters 

6.4 DEFECT CLASSIFICATION  

Once the ultrasonic signal data was obtained from the sample aluminium die 

castings, signal analysis was carried out. The waveform of an ultrasonic signal 

obtained from a defective casting has significant information. The application of 

signal pre-processing techniques will reduce the dimensionality of the input signal. 

The first defect classification step involved the conversion of the raw signal data into 

input signals for the neural network. This conversion included normalisation, which 

scaled the raw data to continuous values between 0 and 100, and ensured that signal 

classification using the neural network was undertaken based on the signal wave 

shape. The MATLAB neural network toolbox was used for the defect classification 

application. It provided the in-built functions such as logsig, and tansig which were 

used as a transfer function between each layer of neural network [91]. 
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6.5 SIGNAL PRE-PROCESSING 

6.5.1 Overview 

A received signal can be directly applied to a neural network, thereby forcing 

the neural network to discover the inherent features characterising the signals and 

then performing the desired detection. A practical drawback of this approach is that it 

can be very slow, particularly in the context of a large-scale problem such as the one 

addressed in this research project. Hence, pre-processing is essential to remove 

redundant information, thereby enabling more effective classification of data. A 

number of pre-processing steps are required before a successful classification is 

possible. In order to achieve an improved result, different signal pre-processing 

techniques, namely, Fast Fourier Transform (FFT), Wavelet Transform (WT) and 

Principal Component Analysis (PCA) were investigated. The categories are as 

follows: 

• FFT – ultrasonic signal data pre-processed by passing through FFT and fed 

into the input nodes of the neural network 

• WT – ultrasonic signal data pre-processed by passing through WT and fed 

into the input nodes of the neural network, and 

• PCA – ultrasonic signal data pre-processed by passing through PCA and fed 

into the input nodes of the neural network  

The following sections explain, in detail, each of the above pre-processing methods 

applied in this research. 

 

6.5.2 FFT Procedure 

The first type of pre-processing used in this research was the Fast Fourier 

Transform (FFT) which was applied to the raw ultrasonic signals. Fourier analysis 

breaks down a signal into constituent sinusoids of different frequencies, and is a 

mathematical technique used for transforming the view of the signal from the time 

domain to the frequency domain. This pre-processing approach enabled the 

exploitation of the power spectrum, a measurement of power at various frequencies 

[91]. The usefulness of this approach is based on the fact that echoes due to flaws 
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differ in spectral content from the echoes caused by background scattering noise 

[90]. 

 

The FFT function, ‘fft’ available in the MATLAB signal processing toolbox 

was applied on the matrix of input signals. However, applying the fft function to a 

matrix produces another matrix with real and complex values as presented in 

Equation 2.4 (Section 2.7.3.2). In this analysis, the power spectrum of the frequency 

components was then obtained by multiplying the FFT output with its conjugate in a 

process to obtain the magnitude of the real and complex values of the FFT. The 

power spectrum of the raw signal was then applied as input to the neural network to 

carry out defect identification. A sample MATLAB m-file program with the FFT 

function is presented in Appendix G. 

 

FFT was applied to the ultrasonic signal to obtain the frequency spectrum 

[91].  To compare the signals using their spectral content, often the use of the FFT 

alone is not sufficient. If additional techniques could be used to obtain a more 

complete representation of the behavior of spectral components within the signal, it 

would be advantageous to do so. 

 

 

6.5.3 PCA Procedure 

Another approach used to improve the neural network performance was to 

construct a basis on which given data sets yield the best compression. The idea 

behind compression is to represent data using only a limited number of its 

components for which the variance is sufficiently large. This procedure is known as 

Principal Component Analysis (PCA) and it can be summarised as follows [87]: 

• A sample covariance matrix of the raw training signal is calculated. 

• The eigenvalues and eigenvectors of the covariance matrix are then 

evaluated.  

• The eigenvectors are sorted according to the magnitude of their respective 

eigenvalues, and  
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• The eigenvectors with the largest eigenvalues (variances) corresponding to 

the dimensions that have the strongest correlation to the raw training data are 

selected. 

The original measurements are then projected onto the reduced dimension vector 

space defined by the set of selected eigenvectors (defined according to the largest 

eigenvalues). 

 

MATLAB m-file code was written to carry out the above procedure as 

presented in Appendix G. For example, the training data in this analysis consisted of 

220, 50-dimensional signals. A covariance matrix was obtained from the training 

data using the function ‘Cov’ from the MATLAB signal processing toolbox. From 

this a set of eigenvectors and their corresponding eigenvalues were obtained, using 

the function ‘EIGS’ from the MATLAB signal processing toolbox. The vectors were 

sorted according to their respective eigenvalues to obtain a number of principal 

components. The set of principal components forms a transformation matrix, which 

was used to provide a linear transformation such that the input data (220 nodes) 

could be projected onto a lower dimension sub-space.  

 

The optimum number of principal components to be used in this investigation 

was determined by carrying out experiments with varying number of principal 

components and determining the configuration that provided the best classification 

with neural networks. Between 10 and 120 principal components were investigated. 

The signal classification was undertaken with the Feed-forward back propagation 

neural network using the selected parameters as presented in Section 6.3. These tests 

were carried out on the signals obtained from both rough (Ra0) and smooth (Ra2) 

surface sections of castings with and without simulated and real defects. X-ray 

inspection was carried out to identify the defect free areas of the casting (Section 

4.7). Figure 6.5 shows that the highest classification percentage was obtained with 40 

principal components for the given ultrasonic signal inputs with both smooth surface 

(Ra2) and rough surface (Ra0) casting sections. When the number of principal 

components used as input to the neural network was either smaller or larger than 40 

principal components, it resulted in a lower classification performance. This was a 

consequence of loosing important signal data when a number smaller than 40 
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principal components were used. Conversely, a larger number of principal 

components led to redundant data being presented to the neural network. This lead to 

an increased number of input nodes in the network, and a subsequent increase in the 

number of network weight values. This in turn resulted in a reduction in the overall 

training performance of the network. Hence, 40 principal components were selected 

to carry out further analysis on the ultrasonic signal as this configuration provided 

the best classification percentage. 
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Figure 6.5 Selection of number of principal components with the plot of 

classification percentage for Ra0 and Ra2 surface types 

 

6.5.4 Wavelet Procedure 

In this section, the transformation of time-based signals using the wavelet 

transform is described. The objective of this transformation was to compress the 

ultrasonic signal prior to input into the ANN for classification. Detailed information 

on the wavelet transform pre-processing technique as applied to non-stationary 

waveform was presented in Section 2.7.3.4. In this research, due to surface roughness 
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of the casting, ultrasonic signal waves were observed to vary significantly. 

Furthermore, the defect information was also embedded in the front wall echo when 

the defect was close to the front surface of the casting.  

 

Wavelet analysis involves the breaking up of a signal which is a shifted and 

scaled version of the original wavelet or “mother wavelet”. The central frequency of 

the mother wavelet is chosen close to that of the ultrasonic pulse. There are a variety 

of wavelet types to choose from for a mother wavelet. There are a variety of wavelet 

types to choose from for a mother wavelet. In this case, wavelets belonging to the 

Haar and Daubechies, were applied on the input signal to determine which 

configuration was best suited to represent the defect signal (gas porosity defects). 

Symlets are nearly symmetrical wavelets proposed by Daubechies [146] as 

modifications to the Daubechies family that has found widespread application in 

feature extraction.  

 

The implementation of the wavelet transform with MATLAB was undertaken 

using the continuous wavelet transform (CWT) function [96] in wavelet toolbox. It 

returns the coefficients of the CWT of a single signal. This function has three input 

parameters. The first parameter is the signal, the second is the scale and the last 

parameter is the type of mother wavelet. This function produces a matrix of N values 

(number of samples) defined by the scale of the signal tested. Figure 6.6 illustrates 

the surface plot of the CWT of a signal, which belongs to Ra0 surface type. As 

shown, the discontinuities or abrupt changes in the signal are represented by peaks 

depending on their frequency. 

 

The drawback of the use of the continuos wavelet transform for signal 

analysis is that it increases the complexity and memory required to calculate large 

number of coefficients. For example, for one batch of training signals, which is a 

matrix of N (data points) by 50 signals, the CWT has to create a 3D matrix of S x N 

x 50, where S is the magnitude of scale values. Not all of these wavelet coefficients 

provide a significant contribution, with respect to the evaluation of defect signals. In 

other words, it is not necessary to use all the coefficients with a (ANN) signal 

classification process. Another drawback of the CWT is that the representation of the 
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signal often contains redundant components. Therefore, another function called 

Discrete Wavelet Transform (DWT) was applied which enables the specification of 

the scale and position of the signal [96]. This transformation is more efficient since it 

enables the conversion of the important coefficients obtained from the signal.  

 

Figure 6.6 Surface plot of CWT coefficients of the ultrasonic signal obtained from 

Ra0 surface type 

The idea of DWT starts from decomposing discrete time signals into their 

approximate (scaling) and detail (wavelet) coefficients after passing them through a 

high-pass and a low-pass filter [99]. The procedure is repeated for further 

decomposition of the low-pass filtered signals and the high-pass filtered signals 

which constitute the DWT as presented in Section 2.7.3.4.  

 

When choosing the mother wavelet, there are generally no straight forward 

methods to determine the most appropriate wavelet type for a given application. 

Hence, various mother wavelets were tested on the input ultrasonic signals in order 

to identify the wavelet type that best suited the flaw signals. Figure 6.7 is an example 

of a WT using Haar as the mother wavelet on the smooth surface (Ra2) casting 

signal. A single-level discrete wavelet transform of Haar wavelet type was used on 

the input signal. The values of both approximate (scaling) and detailed (wavelet) 
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coefficients were obtained for this wavelet type using the wavelet filters directly on 

the input signal (Section 2.7.3.4). These detailed coefficients were only used to 

ensure exact global reconstruction of the input signal. The approximate coefficient 

produced a smoothed version of the signal which was used at the next scaling stage. 

The red line in Figure 6.7, represents the original signal while the blue line represents 

the signal compressed using the Haar type of WT. The Haar wavelet was explored 

for this purpose because of its simplicity. The other reason for exploring the use of 

the Haar wavelet was its sharp had some similarity with the defect signal. 
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Figure 6.7 Haar mother wavelet type applied on original defect signal from Ra2 

surface casting 

The performance in relation to minimisation of error in terms of classification 

percentage depends on the choice of wavelet and its order. After experimenting with 

a number of different wavelets on the input ultrasonic signal data, the Dauchebies 

type wavelets (db) was found to outperform other wavelets based on classification 

performance.  To select the optimum order of the wavelet, the pre-processing of the 

signal was carried out from the 2nd Dauchebies (db2) wavelet up to a maximum of 

13th order Dauchebies wavelet (db13). Even though the Dauchebies wavelet does not 

provide good data compression, it demonstrated a good match with the flaw signals. 

Figure 6.8 illustrates the wavelet transform ‘db5’ for a flaw signal from the smooth 
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surface (Ra2) casting. The red line represents the original signal while the dotted 

blue line represents the signal compressed using the WT ‘db5’. As the approximation 

level increases, the variation within the signal is progressively reduced, and longer 

variation features (signals) become more obvious. Approximation level 5 (db5 – 

Figure 6.8) enables the exhibition of the necessary features of the signal whereas 

Haar wavelet has removed too much information and only broad signal information 

is displayed (Figure 6.7).  
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Figure 6.8 Daubechies wavelet level 5 applied on original defect signal from smooth 

surface casting 

The classification performance of different wavelet transforms was evaluated 

on the signals obtained from both rough (Ra0) and smooth (Ra2) surface sections of 

castings with and without simulated defects. The plot of the classification 

percentages obtained using different wavelets is shown in Figure 6.9. The different 

db values lead to different final classification percentage of ultrasonic signals as 

different filter levels are applied to match the input signal type (rough and smooth 

surface signals). As the db level increases from db1 to db13, there is increasing 

levels of filtering of the signal (i.e., fluctuations caused by noise and surface 

roughness were removed). As the db level increases beyond db5, there is a 
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fluctuation in the classification percentage. As such it can be deduced at this point 

the useful information relating to defect is being filtered out. Figure 6.9 indicates that 

the highest classification percentage for both rough (Ra0) and smooth (Ra2) surface 

types is obtained with the db5 wavelet type. 

 

The above analysis demonstrated that the selection of the proper wavelet type 

is critical to effective signal pre-processing. As the results have indicated, the 

information contained in the DWT provides a more accurate representation of flaw 

signals than the CWT in this particular application. Hence, further application of WT 

was carried out with its discrete form and Dauchebies mother wavelet type of db5. 
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Figure 6.9 Selection of Daubechies family wavelet type with the plot of 

classification percentage for Ra0 and Ra2 surface types 
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6.6 COMBINED PRE-PROCESSING TECHNIQUES   

An investigation was carried out in this research to evaluate whether it was 

preferable to use a combination of pre-processing techniques rather than a single pre-

processing technique to obtain acceptable levels of signal classification. To achieve a 

better classification performance with neural networks, other feature extraction 

methods were explored. The strategy adopted in this research was to apply well 

known signal processing tools such as Fourier Transforms (FT), Wavelet Transforms 

(WT) and Principal Component Analysis (PCA) in various combinations to 

determine the best approach. It was decided to use time-frequency analysis on the 

non-stationary signals, so that they could be transformed into a two-dimensional 

waveform. Normally, frequency represents one dimension and time represents 

another dimension of the waveform. This procedure assists the neural network in 

identifying the salient features of the received signals. Such an approach may be 

inefficient due to the highly redundant nature of the time-frequency ultrasonic input 

signals from the castings. The redundant components of the time-frequency signal 

can be removed prior to processing by the neural network, thereby enhancing the 

efficiency of computation. PCA was applied to the time-frequency data to eliminate 

the redundant components that might be present in the signal. 

 

Figure 6.10 shows the block diagram of the use of WT or FFT type and PCA 

analysis as a combined pre-processing method for the input ultrasonic signals. In this 

method the raw signals were passed through the WT or FFT and then, through PCA. 

The final signal obtained after pre-processing was fed into the neural network 

classifier for signal classification. PCA was used to reduce the dimensionality of the 

input data to the neural networks while retaining useful information for signal 

classification. The key to dimensionality reduction is the selection of suitable 

principal components. 

 

An approach to signal pre-processing not attempted previously is described in 

Section 7.6. The FFT and WT pre-processing methods were applied in sequence to 

investigate the possibility of achieving an improved classification percentage. 
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                                                                       Raw Signal 
 

                                                                           

 

 

                                                                          

                                                               Input 
 

 

                                                           Output  
                                                                                 

Figure 6.10 Block diagram of combined signal processing method 

6.7 SUMMARY 

It is impossible to know in advance which combinations of neural network 

parameters are most suitable to address a given problem. It depends on many factors, 

and usually a trial-and-error method has to be used to determine the optimum neural 

network configuration and training regime. Listed below are the critical findings of 

this research in relation to neural network characteristics that are best suited to 

address the issue of ultrasonic inspection of rough surface castings: 

• Sigmoid units such as tansig and logsig transfer functions were selected 

based on the initial trial runs with the neural network, and using random 

initialisation of weights for the neural network (Section 6.2) 

• 500 epochs were selected after investigating the variation in the mean square 

error and classification percentage with changes in the number of epochs 

(Figure 6.3), and similarly, the optimum number of nodes for the input and 

WT or FFT  

PCA Application 

Neural Network Classifier
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hidden layers were found to be 20 and 10 respectively as illustrated in Figure 

6.6, and  

• A neural network topology with 220 input nodes was used to represent the 

ultrasonic input signal and one output neuron to determine the nature of the 

output signal (i.e., defect and non-defect).  

 

The final parameters as selected of the feed-forward back propagation neural 

network for this research were presented in Table 6.3. The procedures for the 

application of FFT, PCA and WT type signal pre-processing techniques were 

presented in Section 6.5. The artificial neural networks were used to classify signals 

from smooth and rough surface castings and their performance was compared. The 

next chapter presents the results obtained from the feed-forward back propagation 

neural network classifier after subjecting the input signals to different pre-processing 

techniques as described in this chapter. 
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CHAPTER 7.  

RESULTS 

7.1 OVERVIEW 

This chapter presents the results obtained from ultrasonic immersion testing 

on rough and smooth surface castings in order to evaluate the performance of this 

defect detection system. After the experimental parameters were optimised, 

ultrasonic immersion testing was carried out on selected castings. The signals 

obtained from both the defect and non-defect regions of the castings were stored for 

further signal processing. The defect signals were collected from castings with 

different sized porosity defects, which were either real or simulated (side drilled 

holes). In this chapter, it has been specified whether the defect signals used for 

analyses were obtained from real or simulated defects. 

 

Some sample ultrasonic signals obtained from castings with varying surface 

roughness are presented in Section 7.2. A learning approach based on neural 

networks and different signal processing techniques was applied to classify the 

signals (Section 7.3). The percentage classification performance using different 

combinations of signal processing techniques is presented in Section 7.5. The 

ultrasonic signals were validated against X-ray and visual inspection results to ensure 

reliability of the experimental results. 
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7.2 INFLUENCE OF SURFACE ROUGHNESS ON DEFECT 

SIGNAL 

In order to determine the influence of surface roughness on the defect signal 

amplitude, the surface roughness of the castings was measured and grouped as shown 

in Table 5.2. Experiments were carried out on castings of 8 mm thickness and fine 

grain size range (as shown in Section 5.6.4). Then, the amplitude of the defect signal 

was evaluated as a function of surface roughness and incident frequency. In order to 

evaluate the effect of surface roughness on ultrasonic signals obtained from castings 

with defects, simulated defects (side drilled holes) with hole size of 0.5, 0.7 and 1 

mm were used in these experiments. The roughness of the rear side of the casting 

was ignored because it was less than 5 μm (i.e., similar to a smooth surface) and did 

not exceed 10 μm. Similarly, as smooth surfaced side drilled holes were used in these 

experiments, the surface roughness associated with the holes was considered to have 

a negligible effect on the ultrasonic signal. The inspection parameters selected in 

Chapter 5 were used in the experiments presented in this section. 

 

Experiments were carried out on 5 casting sections each with 10 simulated 

defects of 0.7 mm diameter. The results of this analysis are presented in Figure 7.1. It 

can be seen that the defect signal decreases with increases in surface roughness (Ra). 

Negligible defect signal amplitude was observed in the region where surface 

roughness was 150 μm with all of the selected frequencies. This was due to the high 

scattering effect of the ultrasonic signal at the rough surface. The low frequencies (up 

to 10 MHz) showed larger defect signal amplitude than the high frequencies (15 

MHz and 20 MHz) for any surface roughness up to 100 μm. No defect signal 

amplitude was observed for surface roughness values above 125 μm when 15 MHz 

and 20 MHz frequency probes were used. These results indicate that both the surface 

roughness and frequency have a significant influence on the ability to detect the 

defects in castings. The larger the relative surface roughness when compared to the 

wavelength of the ultrasonic signal, the greater the energy scattered at the surface 

interface. This then reduces the amount of ultrasonic energy entering the casting. 

Further, the reflected echo from defect and back surface has to be transmitted via the 
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rough surface interface back to the ultrasonic transducer (probe). Once again, more 

energy was scattered at the interface, and less ultrasonic energy was detected at the 

probe.  
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Figure 7.1 Variation of defect signal amplitude with surface roughness for 

different frequencies  

Ultrasonic C-scan inspection was also carried out on the same sample casting 

sections to obtain a detailed understanding of the A-scan results from castings with 

different surface roughness values. A probe with frequency of 10 MHz and with a 

25.4 mm point focus in the water column was used for these inspections. C-scan 

analysis was carried out with the aid of a robotic arm manipulator moving in the raster scan 

format on top of the sample casting immersed in the water column. The raster scan step 

was set up at 0.5 mm. Figure 7.2 illustrates C-scan analysis of castings with surface 

roughness Ra0, Ra1 and Ra2 types containing 0.7 mm diameter side drilled holes. 

The colour variation in Figure 7.2 represents the signal amplitude variation in the 

time window set by the electronic gate in the equipment. The electronic gate was 

applied between the front wall and back wall echo signal to enable the measurement 

of the simulated defect signal amplitude. The threshold value was set at 20 dB in the 
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equipment during the C-scan measurements. C-scan inspections were carried out on 

castings with different surface roughness. It was difficult to detect the defect signals 

from the rough surface (Ra0) C-scan image (Figure 7.2a). However, in the case of 

machined smooth surface sections (Ra2), the defect signals were clearly observed 

(Figure 7.2c). 

 

 

 

(a) 

 

 

 

(b) 

 

 

 

(c) 

                              

                                                                          

      

0.7 mm side-drilled holes        

Figure 7.2 C-scan amplitude image of the SOSP part gate section with varying 

surface (a) Ra0, (b) Ra1 and (c) Ra2 

A frequency of 10 MHz had been selected as an outcome from these 

experiments to carry out further inspection on the rough surface castings to detect gas 

porosity defects that are smaller than 1 mm diameter in size. Figure 7.3 shows the 

signals obtained from a non-defect area of a casting. The original rough casting 

section was inspected to obtain the signal shown in Figure 7.3 (a). Following this, the 

casting section was machined to obtain the signal shown in Figure 7.3 (b).  The Y-

axis of the figure is in decibels (dB) and in X-axis each division represents 1.6 mm. 

The defect sections of the casting were also inspected. However, as indicated in 

Figure 7.4a, it was difficult to identify the defect (0.7 mm diameter side-drilled hole 

a

b 

 c 
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at a depth of around 3.5 mm) from the rough surface by observing the ultrasonic A-

scan display. The location of the defect was identified with the aid of X-ray 

inspection. The horizontal bars in Figures 7.3 and 7.4 represent the electronic gates 

set in the EPOCH III equipment. These electronic gates are used to select the 

appropriate time base (X-axis in Figure 7.3 and 7.4). This section of the time base is 

displayed across the full width of the A-scan screen. These electronic gates are used 

to eliminate the part of the ultrasonic signals that are not relevant to the investigation 

(signal from the transducer face up to the front surface of the casting). At the front 

rough surface, the defect signal merges with the clustered FWE due to the signal 

scattering effect at the rough surface. Some of the side lobe energy returns to the 

transducer in multiple reflections from the front wall. This is referred to as clustering. 

This causes loss of resolving power in the transducer and increases the length of the 

dead zone.  
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                                                       (a) 

 
                                                       (b) 

Figure 7.3 Ultrasonic A-scan signal display from a non-defective casting having 

(a) Rough surface (b) Machined smooth surface using 10 MHz frequency probe 

 

8 mm 
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                                                       (a) 

 
                                                       (b) 

Figure 7.4 Ultrasonic A-scan signal display from a defective casting having (a) 

Rough surface (b) Machined smooth surface using 10 MHz frequency probe 

 

8 mm 
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In the case of machined surfaces, the defect signal and back wall echo were 

clearly identified (Figure 7.4b). This was not the case for rough surface castings. 

Therefore, to identify the defect signal echoes from the rough surface castings, a 

suitable signal processing technique was required to be applied to the signals. The 

next section presents the results obtained from using different signal pre-processing 

techniques to classify the defect and non-defect ultrasonic signals. 

7.3 ULTRASONIC SIGNAL CLASSIFICATION 

7.3.1 Overview 

The choice of the input features is critical for the success of any signal 

processing technique. The total signal from the front to the back wall echo was 

applied as an input to the neural network. The part of the signal representing the 

defect cannot be passed into the neural network on its own as the neural network 

based inspection system has to classify the castings with and without defects. As 

such the entire signal (Figure 7.3 and 7.4) has to be used as input to the neural 

network for classification purposes. The use of the complete signal enables the 

design of a robust neural network for defect identification that accommodates noise 

produced by surface roughness.  

 

The neural network parameters were optimised as described in Chapter 6. 

Following on from the previous chapter, in this section the results obtained from the 

artificial neural network based classification process using different signal pre-

processing techniques, namely Fast Fourier Transform (FFT), Principal Component 

Analysis (PCA) and Wavelet Transform (WT) are presented. The performance of 

each signal pre-processing type for different surface roughness values of castings 

was evaluated only after the neural network based classification process was 

completed. The defect classification percentages obtained from the output of the 

ANN provide the performance level indicator for each pre-processing method along 

with the standard deviation of the classification percentage after 10 numbers of 
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loops. In each loop both training and testing was carried out for the given set of input 

signals and the MATLAB programming codes were used to carry out this exercise 

(Appendix G). 

 

 

7.3.2 FFT Classifier 

The purpose and procedure of the FFT application on the ultrasonic signal 

has been presented in Section 6.5.2. The application of FFT as a pre-processor of the 

ultrasonic signal data resulted in a better signal classification than with the raw signal 

(without pre-processing) classification alone. The noisy signal obtained from the 

rough surface casting is converted to the frequency domain with the FFT. Figure 7.5 

illustrates the classification percentage results obtained from the ANN after FFT pre-

processing the input ultrasonic signal obtained from the smooth surface (Ra2) 

casting. The different colour lines in Figure 7.5 shows the number of loops (10 

loops). In each loop both training and testing was carried out for the given set of 

input signals and the MATLAB programming codes were used to carry out this 

exercise (Appendix G). In each loop, 500 epochs were carried out to obtain the mean 

and standard deviation of the classification percentage. It was found that there was a 

high fluctuation in the classification percentage at the start of each loop and as the 

number of epochs increase gradually a steady classification state was reached after 

300 epochs. A steady classification was achieved at 300 epochs in most of the loops 

instead of 500 epochs, which was selected earlier (as presented in Section 6.3.4). It is 

apparent that the FFT pre-processing technique enables faster convergence compared 

to raw signal classification (Section 6.3.4). In most of the epochs only 80% 

classification was achieved with the input signals, even though 93% classification 

has been achieved for simulated defect signals at one particular epoch as shown in 

Figure 7.5.  
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Figure 7.5 FFT type pre-processing classification % for signals obtained from the 

smooth surface section of the castings (Ra2) 

The ultrasonic defect signals were difficult to classify when the neural 

network was presented with the FFT of signals obtained from rough surface (Ra0) 

castings. The defect signal echoes were affected due to the random multiple 

reflections occurring at the rough interface surface of the casting and water column 

in ultrasonic immersion testing. The FFT classification was carried out as explained 

in Section 6.5 using the neural parameters as described in Section 6.3. The purpose 

of the ANN is to identify those frequency spectrums that are uniquely associated 

with physical defects within the castings. Figure 7.6 illustrates the classification 

percentage results obtained from ANN after pre-processing the input signal obtained 

from rough surface (Ra0) casting with FFT pre-processing type. The different colour 

lines in Figure 7.6 show the different number of loops (10 loops) applied on the 

given set of input signals for testing in 500 epochs to determine the mean 

classification percentage and their standard deviation. At the start of each testing 

loop, there is a high fluctuation in the classification percentage, and as the number of 

epochs increase gradually a steady classification state is reached after 200 epochs. 

The mean classification percentage of signals obtained from the real defects with 
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rough surface section was 72.3% when compared to 81.3% obtained with the smooth 

surface castings.  

 
Figure 7.6 FFT type pre-processing classification % for signals obtained 

from the rough surface section of the castings (Ra0) 

 

 

7.3.3 PCA Classifier  

The next pre-processing method investigated was Principal Component 

Analysis (PCA). The application of PCA eliminates those components of the signal 

that contribute less variation in the ultrasonic input signals. It was applied to the 

input signals obtained from castings with different surface roughness according to 

the procedure described in Section 6.5.3. A MATLAB program was written to create 

eigenvectors and to apply principal components as presented in Appendix G. From 

the initial observation, forty principal components were selected for this 

investigation. This number of principal components was used based on the maximum 

classification percentage achieved for the given set of input signals (refer to Figure 

6.5).  
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The covariance matrix obtained from the raw signal contains the transformed 

input vectors after removing the less significant ultrasonic signal components. Then, 

the covariance matrix was processed through a pre-selected ANN structure for defect 

classification. However, this approach to signal pre-processing of the input data 

proved insufficient for achieving improved signal classification with the chosen 

number of principal components compared with the FFT classifier.  

 

Figure 7.7 illustrates the variation in the classification percentage for number 

of epochs in the neural network during the testing process. The classification 

percentage is calculated after each epoch. The ANN classification of ultrasonic 

signals was carried out as described in Section 6.5.3 by applying the optimised neural 

network parameters as presented in Section 6.3. The different colour lines in Figure 

7.7 shows the number of loops (10 loops). In each loop both training and testing was 

carried out for the given set of input signals and the MATLAB programming codes 

were used to carry out this exercise (Appendix G). In each loop, 500 epochs were 

carried out to obtain the mean and standard deviation of the classification percentage. 

 

The mean classification percentage obtained for the ultrasonic signals using 

PCA was only 63.6% for signals obtained from rough surface castings. The 

classification of rough surface signals had a standard deviation of 7.3% for 50 loops. 

Figure 7.7 illustrates that the classification percentage of the ultrasonic signals 

fluctuates approximately from 44% to 76%. The relative performance in terms of 

signal classification for ultrasonic signals obtained from rough surface castings in 

comparison with those from smooth surfaces did not improve with the application of 

the PCA pre-processing technique (Figure 7.9). Signal pre-processing of ultrasonic 

signals from different types of surfaces with PCA did not improve the classification 

percentage as presented in Figure 7.9. Hence, there was a need to investigate other 

signal pre-processing techniques to classify the weak ultrasonic signals that are 

associated with rough surface castings. 
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Figure 7.7 PCA signal pre-processing classification percentage for number of 

epochs with rough surface castings 

 

 

7.3.4 WT Classifier 

Wavelet Transform (WT) was the next signal pre-processing technique 

investigated. The appropriate wavelet type was selected after comparing the 

performance of various wavelet types (as described in Section 6.5.4) in relation to 

signal classification using an Artificial Neural Network (ANN). Daubechies’ wavelet 

db5 type was selected as explained in Section 6.5.4, and illustrated in Figure 6.9.  

 

Figure 7.8 represents a graph of the corresponding approximation coefficients 

of the training signals in the Ra0 surface roughness group. The best results were 

obtained from db5 (Section 6.5.4), and the data was composed of 66 DWT 

coefficients for each of 50 training signals with amplified magnitude. The testing 

data consisted of 66 DWT coefficients for each of 30 testing signals. 
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Figure 7.8 DWT approximation coefficient plot for 50 Ra0 signals 

 

The application of WT pre-processing technique enabled the re-alignment of 

the ultrasonic signal as shown in Figure 7.8. An improved classification percentage 

was obtained with this pre-processing type compared to that obtained without WT 

pre-processing (Figure 6.2). Different scaling levels were investigated for WT 

analysis to determine the DWT coefficients that provided the highest classification 

percentage of defects. The applications of DWT coefficients along with the filter 

banks (Section 2.7.3.4) have significantly modified the input to the ANN for signal 

classification. The detail coefficients at low scale corresponded to the high frequency 

components of the signal, and also showed the spikes (i.e., noise) produced by the 

surface roughness. The results obtained from the feed-forward neural network 

classification of signals from three different surface types are shown in Figure 7.9. 

The results were compared after pre-processing ultrasonic signals using FFT, WT 

and PCA. Figure 7.9 indicates that feeding the raw signal to the neural network had 

the least successful classification percentage when compared to signals classified 

with FFT and WT pre-processing types. However, the FFT produced a better 

classification percentage compared to PCA and WT. 
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Figure 7.9 Successful classification percentage using different signal processing 

techniques with both rough and smooth surface castings 

The variation in classification percentage for different surface types with WT 

technique was not significantly higher than for the FFT pre-processing technique 

(Figure 7.9). In spite of data compression the performance of the WT classifier was 

in the same order as that for raw signal classification. The wavelet method required 

the largest number of coefficients to achieve the desired performance. Hence, it can 

be concluded that the pre-processing of ultrasonic signals using FFT provided a 

better classification percentage than WT or PCA within the context of a neural 

network based classification system. 

7.4 SIMULATED AND NATURAL DEFECT CLASSIFICATION 

Figure 7.10 presents the classification percentage for simulated defects (side-

drilled holes), natural defects (gas porosity) and mixed defects, i.e. the combination 

of both side-drilled holes and defects caused by gas porosity. The number of signals 
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obtained for each defect type was given in Table 6.1 (Section 6.2). Figure 7.10 

provides details on the classification percentages for different signal processing 

techniques with Ra0 and Ra2 surface types. Figure 7.10 also illustrates the plot of the 

signal classification achieved with simulated, natural and mixed defect signal 

(combination of simulated and natural defects) types. Figure 7.10 indicates that the 

classification performance with simulated defects was almost equal to that obtained 

with natural defects. Further, as documented in Section 4.5.2, the sizing and location 

of the simulated defects within the casting section was done such that they closely 

matched the natural defects. Therefore, it was concluded that the use of simulated 

defects for the initial testing and validation (as documented in Chapter 6) was 

justified.  
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Figure 7.10 Classification percentage for simulated, natural and mixed signal with 

Ra0 and Ra2 surface roughness using different signal pre-processing techniques 

 

However, since this research focused on identifying real defects within the 

rough surface castings, further signal processing was carried out only on the 

ultrasonic signals obtained from castings with natural defects. The classification 

percentage presented in Figure 7.10 is the mean classification percentage (out of 50 
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iterations) of the ultrasonic signals pre-processed with FFT, WT and PCA prior to 

inputting to the ANN. 

7.5 CLASSIFICATION WITH COMBINED PRE-PROCESSING 

METHODS 

7.5.1 Overview 

The specific objective of this section is to describe the approach used to 

improve the classification performance of ultrasonic signals (defect and non-defect). 

The results obtained without pre-processing and with using only a single pre-

processing method on the input signals indicated that it was not possible to achieve 

classification level of over 73% for signals from rough casting sections. The strategy 

used in the research described in this section was to apply well known signal 

processing tools such as Fast Fourier Transforms, Wavelet Transforms and Principal 

Component Analysis in various combinations to ascertain whether this lead to an 

increase in classification percentage. A similar approach has been adopted by other 

researchers for different pattern recognition problems, as presented in Section 

2.7.3.5. It was envisaged that the combination of signal processing tools would 

enable both time variant and frequency variant features of the signal to be analysed 

together.  

 

Hybrid pre-processing represents a combination of two or more pre-

processing techniques presented earlier in this chapter (Section 7.3). In this section, 

the results obtained from the hybrid pre-processing of ultrasonic signals are 

presented. The defect signals obtained from castings with real defects and varying 

surface roughness were pre-processed using various combinations of techniques 

listed above prior to input of the signals to an ANN for classification. The 

classification results and their associated mean and standard deviation values were 

obtained after executing the neural network in a loop fifty times. This was carried out 

for each combination of pre-processing methods. This process provided an 
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understanding of the stability and consistency of each approach to signal pre-

processing applied in this research. 

 

 

7.5.2 FFT/PCA 

In this combined pre-processing method, at first the FFT of the input signal 

was obtained. Normally, the highly attenuated signal is partially embedded in the 

incoherent backscattered noise. The incoherent spatial noise due to surface roughness 

cannot be eliminated with FFT alone. Hence, PCA was then applied to remove the 

redundant noisy signal, if any, present from the frequency component. PCA was 

applied to the output of FFT. Figure 7.11 shows the variation in the classification 

percentage with the number of epochs for ultrasonic signals from the rough surface. 

The mean classification percentage achieved with this signal pre-processing 

approach was around 73.3%. Even though the highest classification achieved was 

approximately 90%, with this type of pre-processing, the standard deviation (SD) 

was 6.1%, which is still a large value. When compared with the PCA single mode 

pre-processing method classification (Figure 7.7) there was an improvement in the 

classification percentage with this approach (Figure 7.11). However, as stated above 

there was still a large variation (high SD value) in the classification percentage.   
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Figure 7.11 FFT/PCA combination signal pre-processing classification percentage 

for number of epochs with rough surface ultrasonic signals  

The application of the FFT/PCA combination resulted in 76.6% classification 

for the smooth surface castings compared with 73.3% classification for rough surface 

castings, with a standard deviation (SD) of 8.3% (Table 7.1). The classification 

percentage does not vary significantly for the different surface types (Ra0, Ra1 and 

Ra2) with the application of the FFT/PCA pre-processing approach.  

 

Classification % Ra0 Ra1 Ra2 
Mean 73.3 74.6 76.7 
SD 8.3 6.4 5.3 

Table 7.1 Signal classification percentage for FFT/PCA 
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7.5.3 WT/PCA 

In this combination of classifiers the output of the WT was passed on to PCA 

to eliminate the redundant WT coefficients. PCA was applied to the approximation 

component of the wavelet coefficients. The number of principal components used in 

this combination pre-processing was 40 principal components. It was selected based 

on the signal pre-processing procedure as described in Section 6.5.3. The application 

of the wavelet transform, combined with principal component analysis, lead only to a 

marginal increase in the classification percentage compared to the raw signal 

classification. The performance of this configuration was not satisfactory. The 

important factor to consider with this classification method was the large SD values 

for the all the three surface types was observed as shown in Table 7.2.  

 

Classification % Ra0 Ra1 Ra2 
Mean 64.6 68.4 73.3 
SD 7.3 6.3 8.5 

Table 7.2 Signal classification percentage for WT/PCA 

 

7.5.4 WT/FFT 

In this signal pre-processing approach, WT was applied to the original 

ultrasonic signal as a first step of pre-processing. It was carried out by applying 

DWT filters (as described in Section 6.5.4), which divide the signal into frequency 

bands. Since DWT divides the original signal into low and high-pass frequency 

bands, it was possible to analyse each frequency band independently. A typical 

characteristic of DWT was that in each decomposition stage, due to the down-

sampling operation, the wavelet coefficients of each layer still contain information of 

the original signal. The analysis of wavelet was carried out with Daubechies’ mother 

wavelet type. The suitable db5 wavelet type was selected for signal classification as 

presented in Section 6.5.4. 

 



 
CHAPTER 7. RESULTS 

 

168 

The application of db5 wavelet type on the input signals resulted in the 

determination of both detailed and approximate coefficients. FFT was then applied 

on the approximate coefficients which retained the time-frequency information of the 

original signal in down-sampled form. The power spectrum of FFT output was used 

as an input to the neural network classifier. The results presented in Table 7.3 show 

the mean and standard deviation of classification percentages of the ultrasonic 

signals obtained from three rough surface types after pre-processing through the 

WT/FFT combination. However, in the case of signals without higher frequency 

components (low values of WT down-sampling method) the condition was different 

and it resulted in a low classification percentage (See results of various combined 

pre-processing techniques in Figure 7.12).  

 

Classification % Ra0 Ra1 Ra2 
Mean 79.3 83.3 90.6 
SD 1.9 3.6 3.4 

Table 7.3 Signal classification percentage for WT/FFT 

A graph showing the performance of the different signal processing methods 

and associated classification percentages for castings with varying surface roughness 

is presented in Figure 7.12. The WT/PCA combination signal pre-processing method 

resulted in the lowest classification percentage among the different methods 

described in this section (Figure 7.12). 
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Figure 7.12 Successful classification percentage using combined signal pre-

processing techniques 

7.6 A NEW COMBINED PRE-PROCESSING APPROACH 

7.6.1 Overview 

An approach to signal pre-processing not attempted previously is described in 

this section. The FFT and WT pre-processing methods were applied in sequence to 

investigate the possibility of achieving an improved classification percentage than 

that achieved previously (Section 7.5).  
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7.6.2 FFT/WT 

In this method a wavelet transform was applied on the FFT output (power 

spectrum) of the raw signal. Ultrasonic signals from the rough surface castings 

contain reflections from defects which manifest in the A-scans as abrupt time 

localised changes resulting in time varying characteristics. Consequently, the simple 

FFT technique alone might not be an appropriate method for signal pre-processing. 

The application of the wavelet transform (time-frequency representation) technique 

on the power spectrum of the raw signal obtained from different surface 

classification is presented in Table 7.4. The results from signal pre-processing using 

a combination of FFT/WT suggest that performing a WT prior to ANN classification 

enables the exploitation of useful information contained in the FFT output. One of 

the major reasons to apply WT on the power spectrum of the FFT output (which 

contains both real and complex parts) is to reduce the fluctuation in the signal due to 

noise. This also enables reduction in the number of inputs to the neural network. As 

stated previously, as determined by other researchers reduction of the number of 

inputs to neural network while retaining all important information with regard to 

defects leads to  improvement in performance (defect classification percentage in this 

instance). This approach enabled the achievement of an improved signal 

classification in association with the neural network. As observed from the Table 7.4, 

the highest signal classification was achieved for smooth surfaces (Ra2) with small 

variations in the standard deviation (SD). A successful classification of 83.3% was 

achieved from the signals with rough surfaces (Ra0).  

 

Classification % Ra0 Ra1 Ra2 
Mean 83.3 91.6 96.3 
SD 2.9 2.3 2.2 

Table 7.4 Signal classification percentage for FFT/WT 

Figure 7.13 illustrates the combination of FFT/WT type function application 

on the ultrasonic signal input to an ANN. The application of WT followed by FFT 

acts as a filter on the power spectrum of the FFT output on the ultrasonic signal. It 
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could be also stated that the FFT/WT combination pre-processing approach produces 

a smooth spectrum of the un-filtered ultrasonic signal.  

Figure 7.13 FFT/WT combination type pre-processing    

 

Even though a high classification percentage (more than 95%) was achieved 

for smooth surface castings with this combination of signal pre-processing 

techniques, it should be noted that 100% classification was not usually achieved 

except in a couple of iterations.  

 

 

7.6.3 FFT/WT/PCA 

The next step was to apply the combination of FFT/WT/PCA signal pre-

processing techniques to the input signals in order to explore the possibility of 

achieving 100% classification of ultrasonic signals with artificial neural networks. 

The same approach as with the FFT and WT combination has been followed in this 

instance. In order to eliminate any redundant values from the FFT/WT output 

combination, the PCA was applied to the pre-processing step. The eigenvectors and 

eigenvalues were calculated on the output of FFT/WT combination. In this method 

also 40 principal components were used as described in Section 6.5.3. Table 7.5 

shows the classification performance using the combination FFT/WT/PCA pre-

processing method. The maximum classification percentage of 99.8% was obtained 

with the mean of 96.6% for the smooth surface Ra2 type. Similarly there was an 
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improvement in the classification percentage of rough surface signals (82.3%) 

compared to other pre-processing methods presented in Section 7.3 and 7.4. 

 

Classification % Ra0 Ra1 Ra2 
Mean 82.3 89.6 96.7 
SD 4.6 2.3 3.2 

 

Table 7.5 Signal classification percentage for FFT/WT/PCA 

7.7 DEFECT CLASSIFICATION PERFORMANCE 

Given the importance of developing an inspection technique for rough 

surface castings, various pre-processing combination methods were compared for 

Ra0 and Ra2 type surfaces. Figure 7.14 shows the classification percentage achieved 

with different signal pre-processing techniques applied on the ultrasonic signals. 

More than 90% classification for smooth surface casting signals was achieved only 

with three signal pre-processing approaches and they were WT/FFT, FFT/WT and 

FFT/WT/PCA types. Figure 7.14 indicates that the highest classification percentages 

are obtained from combined pre-processing types of FFT/WT and FFT/WT/PCA. 

However, the standard deviation (error bars in Figure 7.14) for the FFT/WT/PCA 

type was greater than for the FFT/WT method. Hence, it can be concluded that, 

based on consistency of signal classification percentage and the low standard 

deviation (SD) variation, the FFT/WT method out performs the FFT/WT/PCA 

combination approach. 
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Figure 7.14  Defect classification percentage and standard deviation of different 

signal pre-processing techniques on Ra0 and Ra2 type surfaces 

These signal pre-processing approaches investigated in this research did not 

require a large amount of computational effort or time (not more than couple of 

hours) for classification. The algorithm (as described in Figure F.2, Appendix F) 

presented in this research to carry out ultrasonic signal classification required low 

computational memory and executed at acceptable speed to identify defects in the 

rough surface castings. 

7.8 ULTRASONIC SIGNAL VALIDATION  

In the analysis described previously (Sections 7.4 to 7.6), the ultrasonic 

signals used for the classification included both defect and non-defect signals. 
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Validation was necessary to ensure that those signals identified as defect signals 

actually corresponded to physical defects in the casting sections. Similarly, it was 

necessary to ensure that those signals identified as non-defect signals actually 

corresponded to regions in which defects were not present. 

  

As explained in Chapter 1 (Section 1.3), one objective of this research was 

identifying the smallest possible gas porosity defects, within castings containing 

varying surface roughness. Although X-ray images were previously used to 

determine where the real defects were located within the castings, it was not possible 

to obtain an accurate estimate of the defect size. Therefore, based on the X-ray 

images the casting sections were cut into small sections such that it was possible to 

examine and measure the defects.  

 

As mentioned in Section 4.7, ultrasonic inspection was validated against 

radiography (X-ray) inspection results obtained from the sample castings. X-ray and 

visual inspections were carried out on the castings inspected with ultrasound and 

successfully classified with an appropriate signal pre-processing technique.  

 

Similarly, X-ray inspection was carried out on the defect sections of the 

castings to detect the defects after ultrasonic inspection. Figure 7.16 shows a casting 

section with cracks and porosity defects at the in-gate section of the casting. In this 

research, emphasis was given to gas porosity defects when compared to crack-like 

defects in the sub-surface region of the in-gate sections of the castings. This was 

mainly due to the predominant presence of gas porosity defects in aluminium 

castings. 
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Figure 7.15 X-ray result of a part of the structural sump oil pan casting with sub-

surface defects in the in-gate section 

 

To visualise the gas porosity defects, the castings were cut into small sections 

as shown in Figure 7.17. These casting sections in the in-gate area were selected 

based on the locations associated with a positive defect classification output from 

ultrasonic signal processing. Figure 7.17a illustrates a cut section of a casting with 

0.5 and 0.7 mm gas porosity defects from a smooth surface type (Ra2). Figure 7.17b 

illustrates a cut section of a casting with 0.7 mm size defect from a Ra1 surface type 

(50-100 μm). The defects with 0.5mm and 0.7 mm diameter were detected by 

ultrasonic inspection of a casting section with surface roughness (Ra2 type up to 50 

μm). However, defects of less than 0.7 mm diameter within castings with surface 

roughness Ra0 and Ra1 (above 50 μm) were not detected using ultrasonic inspection. 

Defects of diameter 0.7 mm in size and higher were detected using ultrasonic 

inspection for castings with surface roughness values ranging from 50 to 100 μm. 

The defect information contained in the signal was indistinguishable from noise 

when the surface roughness was in the range of 100 to 150 μm. Hence, the small 

defects of size less than 1 mm diameter was not detected in this surface roughness 

range using ultrasonic inspection technique.  

Crack and porosity 

defects in the sub-

surface of casting  
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                                       (a)                                                         (b)    

Figure 7.16 Cut-section of the sample castings with gas porosity defects of  (a) 0.5 

mm and 0.7 mm gas porosity defect in Ra2 section and (b) 0.7 mm diameter defect in 

Ra1 section 

7.9 SUMMARY 

The raw signal analysis of the results obtained from ultrasonic immersion 

testing of rough surface castings showed that with the selected frequency range it 

was difficult to detect gas porosity defects. Therefore, artificial neural networks were 

applied on the raw ultrasonic signal data. However, the results were not satisfactory 

as indicated by the low classification percentages for the different surface types. This 

has created a need to pre-process the signals before classifying with artificial neural 

networks. It was demonstrated that by applying suitable signal pre-processing 

techniques, it was possible to identify defects of minimum 0.5 mm size in castings 

with surface roughness up to 50 μm (Ra2). 

 

FFT, PCA and WT signal pre-processing techniques were applied separately 

on the raw ultrasonic signals which were passed into the ANN to achieve a better 

classification percentage. Still, the classification percentage of ultrasonic signals 

obtained from rough surface castings after the application of different signal pre-

processing techniques did not result in more than 80% classification. This was due to 

0.7 mm

0.5 mm 

0.7 mm 
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the presence of the clustered front wall echo. To avoid overlapping class boundaries 

and achieve a better classification performance, a different approach was required. 

Hence, a combination of signal pre-processing techniques was applied on the raw 

ultrasonic signal. The results showed that poor classification was achieved with the 

combination of FFT/PCA and WT/PCA. However, the classification of the signals 

pre-processed with the combination of WT/FFT, FFT/WT and FFT/WT/PCA 

classifiers provided improved classification of more than 90% for castings with 

smooth surfaces and in the range of 75% to 83% for castings with rough surfaces. 

The results obtained from castings with different surface roughness, and the 

classification performances achieved with different pre-processing methods are 

discussed in the next chapter. 
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CHAPTER 8.  

DISCUSSION 

8.1 OVERVIEW 

The aim of this chapter is to describe the validation of a methodology, and the 

establishment of a procedure for ultrasonic inspection of castings in the as-cast state. 

However, this research did not attempt to address all types of defects present in 

aluminium die castings. The discussion presented in this chapter focuses on the main 

research findings such as experimental methodology (Section 8.2) and results 

(Sections 8.3, 8.4 and 8.5). Also discussed are backscatter effects due to the rough 

surface of castings in the as-cast state, and the comparison of the different signal pre-

processing techniques. The results obtained from using different signal pre-

processing methods alone, and in combination, are discussed. The discussion also 

focuses on benefits and limitations of the achievement of the project objectives as 

stated in Chapter 1.  

8.2 DISCUSSION ON EXPERIMENTAL PROCEDURE 

The experimental method described in Chapter 4 focused on obtaining best 

possible ultrasonic signals from rough surface sections of aluminium die castings. 

This was achieved through the selection and implementation of a suitable inspection 

method and inspection parameters to carry out investigations on aluminium castings. 
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Ermolov’s [56] work on the optimisation of conditions in the implementation of the 

ultrasonic pulse echo method clearly emphasised the importance of selecting suitable 

inspection parameters and also recommended procedures to obtain them.  The 

selection of proper inspection parameters was aided by the literature on relevant past 

research as presented in Chapters 2, 4, and 5. 

 

Burningham [126] used the knowledge of expert operators to identify a 

suitable frequency for ultrasonic inspection of iron castings in his doctoral research 

work. The expert operators conducted a series of tests and calibrated the equipment 

with simulated defects, and finally, selected the 5 MHz frequency based on the 

maximum signal amplitude obtained from the simulated defects. However, 

Burningham [126] did not provide detailed information on the selection of the 

frequency, and did not consider the effects of material parameters such as surface 

roughness and grain size variations. This research work addressed these issues in 

Chapter 5. The developed selection process not only enabled the study of 

characteristics of the material (casting) being inspected, but also provided 

information on the effect of material properties on ultrasonic inspection. 

 

Experiments were carried out to determine the effect of grain size variation 

on ultrasonic signals in aluminium die castings as presented in Section 5.5.4. The 

results presented in Figure 5.6 support the earlier findings of Ambardar et al. [65] in 

relation to the effect of grain size on the ultrasonic signal. However, their results 

were obtained from sand castings that had a coarser grain structure in contrast to the 

fine and medium grain structures in high-pressure die castings investigated in this 

research. The attenuation loss experienced in Ambardar et al.’s [65] research was 

higher than the attenuation loss in the castings investigated in this work. It can be 

observed from Figure 5.6 that the attenuation loss (L) due to variation in grain 

structure is comparatively low for castings with fine to medium grain structure at 

higher frequencies (10 to 20 MHz).  

 

The next step in the evaluation of the effects of materials properties on 

ultrasonic signals involved examination of the effects of surface roughness variation. 

The results were presented in Section 5.5.5. These results were comparable to those 
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obtained by Adler et al. [64] and Ambardar et al. [65] (Section 2.5.3). Nevertheless, 

their work was carried out on castings with surface roughness below 50 μm. While 

the research described in this thesis relates to castings with surface roughness 

between 50 and 150 μm. 

 

Adler et al. [64] used both the front wall echo (FWE) and back wall echo 

(BWE) for evaluation of porosity type defects in aluminium cast materials with 

varying surface roughness. Ambardar et al. [65] also used the FWE and BWE in 

their study on the effects of surface roughness on ultrasonic echo amplitude in 

aluminium alloy castings. In this research only the BWE has been used to investigate 

the effects of grain size and surface roughness variations on ultrasonic signals. This 

was due to the fact that there was a substantial loss of amplitude and increased noise 

associated with the front wall echo due to the larger surface roughness of the 

castings. The results on the effect of surface variation were presented in Figure 5.7.  

 

In the ultrasonic inspection of castings, rough surface sections affect the 

ultrasonic beam as it propagates through them. In turn, these effects determine the 

characteristic behaviour of the backscatter signals as observed in Chapter 7 (Section 

7.2). The application of focused probes on the rough surface of castings is described 

frequently in the literature [70,73], and researchers have also clearly demonstrated 

the benefit of using focused probes compared to unfocused probes on rough surface 

materials. In this research, the detection of sub-surface defects within rough surface 

casting sections was difficult with unfocused ultrasonic probes due to the large 

scattering effect. The application of focused probes assisted in achieving better 

results compared to the unfocused probes. These results enabled the elimination of 

the use of unfocused probes at an early stage in this research.  

 

This research work has demonstrated the effect of surface roughness on the 

back wall echo (BWE). The amplitude of the BWE was degraded with an increase in 

the surface roughness. As mentioned earlier in Section 4.5.3, Abdelhay and Mubark 

[137] studied the effects of surface roughness variation on the ultrasonic signal with 

the normal pulse-echo technique. Their results have shown that as surface roughness 

increases the attenuation increases. Their work involved surface roughness values 
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(Ra) over 100 μm. However, this work was carried out on machined steel and with 

contact type ultrasonic testing. Furthermore, they did not investigate the effect of 

variation in frequency used in ultrasonic testing. The effective frequency for the 

measurement of ultrasonic signal amplitude in a situation of varying surface 

roughness was investigated and determined in this research as presented in Section 

5.5.5. 

 

The use of simulated defects within the castings was another important issue 

in the development of the inspection procedure. The unavailability of standard 

calibration blocks from the same material as the castings being inspected led to 

development of the calibration technique used in this research. The use of simulated 

defects in the castings for investigative purposes is not a new approach and has been 

validated by other researchers [46,56,146]. Side-drilled holes were produced in the 

casting to simulate gas porosity defects. The investigation of the effects of surface 

roughness on ultrasonic signals was investigated based on these simulated defects. 

8.3 DEFECT DETECTION ON ROUGH SECTIONS 

The rough surfaces greatly altered the signal-to-noise ratio of the ultrasonic 

signals. As described in Chapters 2 and 5, there has been much published research 

dealing with the analysis of ultrasonic signals from rough surface parts in different 

applications. However, there is no published evidence of investigation on the 

variation of ultrasonic signal amplitude with castings having surfaces with roughness 

values over 50 μm, which is normal un-machined surface roughness in the majority 

of aluminium castings. 

 

From Figure 5.8 (Section 5.5.5) and Figure 7.1 (Section 7.2) it was evident 

that there was an increased loss of BWE and defect signal amplitude as the surface 

roughness increased. Also it could be seen that there was an increased loss of defect 

signal amplitude as the ultrasonic frequency increased (within the range of 2.25 MHz 
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to 20 MHz). Blessing et al. [54] achieved similar results with steel samples at a 

frequency range of 1 to 20 MHz, where BWE decreased with increased surface 

roughness. It can be seen from Figure 2.4 (Section 2.5.3) that their investigations 

were confined to surfaces with roughness values up to 23 μm. The main difference 

between the research undertaken by Blessing et al. [54] and the current research is 

that the current research is concerned with castings containing rough surfaces (with 

Ra values mostly varying between 50 μm and 150 μm). It should be emphasised that 

in the current research, even a single BWE could not be obtained when surface 

roughness values exceeded 100 μm at a frequency of 20 MHz. This was different 

from the research undertaken by Blessing et al. [54], who observed multiple BWEs 

(a total of four) due to multiple reflection within the steel samples at frequencies 

identical to those used in this research. The current research has indicated that for 

surface roughness values up to 50 μm, the effect of surface roughness is minimal 

when frequencies are kept equivalent to or below 10 MHz. 

 

The inability to detect an ultrasonic defect signal may be caused by the 

following factors. For instance, the defect signal amplitude may be reduced due to 

the general scattering losses of the ultrasonic signal at the rough front surface of the 

casting. This was illustrated in Figure 7.1, in which it could be seen that the defect 

signal amplitude was reduced for large surface roughness (in particular for the Ra 

value of 150 μm). Next, the defect signal might be difficult to detect due to the noisy 

backscattered signal in the region of the rough front surface. For example, Figure 

7.4a shows the ultrasonic signal obtained from a rough surface (Ra0) casting section 

with a 1 mm diameter side-drilled hole at a depth of approximately 3.5 mm. It could 

be observed that there was a significant clustered front wall echo signal which 

affected the signal up to a depth of approximately 4.5 mm (Figure 7.4a). Therefore, 

for this example, it was difficult to identify the defects located close to the front 

surface of the particular casting section. Further, the defect signal amplitude, was 

also dependent upon the defect surface (i.e. simulated holes or real defects) within 

the castings – when the surface of the defect was rough, more scattering occurs, 

resulting in a low signal amplitude than for a similar sized defect within a smooth 

surface. A similar trend in relation to the first back wall echo amplitude was 
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observed at different frequencies used in this research as presented in Figure 5.8 

(Section 5.6.5) for castings with surface variation from 100 μm to 150 μm.  

 

Adler et al. [64] studied the effect of backscatter in their work on the 

ultrasonic inspection of aluminium cast materials. They also found that the 

transmitted wave was attenuated in a similar way to the reflected wave at the water-

aluminium interface during ultrasonic immersion testing. However, the backscatter 

effect observed in the current research showed that the ultrasonic signal depended on 

both the selected frequency range and surface roughness if it was over 10 μm Ra 

value (as shown in Figure 5.8 and Figure 7.1). There was a significant loss in the 

back wall echo after 50 μm Ra value for the selected frequency range in this research 

(as shown in Figure 7.1). At a surface roughness below 10 μm, the loss of signal 

amplitude from the back wall and defect was minimal for any selected frequency. 

The unsatisfactory effect of the lower frequency range up to 2.25 MHz on the signal 

amplitude was due to less ultrasound energy being sent into the region of interest in 

the casting. Hence, the lower frequency range with unfocused probe was eliminated 

from further experiments in this research as discussed in Sections 5.6.5 and 8.2. The 

selection of a frequency range suitable to inspect castings with surface roughness of 

more than 50 μm has been successfully achieved in this research. The suitable 

frequency range was identified as being between 5 and 10 MHz. With this frequency 

range the signal patterns obtained from the castings with surface roughness between 

50 μm to 150 μm were suitable for further analysis in relation to defect detection.  

 

The smallest defect that can be detected with this inspection approach was 

identified as approximately 0.5 mm in diameter with a 10 MHz frequency probe for 

castings with surface roughness up to 50 μm (Section 7.2). The identification of a 

defect of size 0.5 mm diameter is consistent with the research objectives discussed in 

Section 1.3. The inspection carried out on castings with simulated defects of less than 

0.5 mm diameter did not yield a signal of sufficient amplitude for further analysis. 

Defects of diameter between higher than 0.7 mm were detected within castings with 

surface roughness values ranging from 50 to 100 μm using an inspection frequency 

of 10 MHz. 
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It was difficult to detect any back surface or defect echo in the ultrasonic 

signals obtained from the castings with the naked eye as observed from Figure 7.4a. 

This was due to clustering of the front wall echo and difficulty in identifying the 

defect signals close to the front surface of the casting. Even an increase in the 

electrical gain (dB) in the equipment to offset the effect of attenuation did not assist 

in identifying the defect echoes. This emphasised the need for ultrasonic signal 

processing to obtain meaningful information from castings with rough surface as 

considered in this research. 

8.4 SIGNAL PROCESSING PARAMETERS 

In this research, results were obtained in a one-dimensional signal output 

format named A-scan from the ultrasonic testing unit. The ultrasonic A-scan offers 

amplitude as the parameter to be monitored. Back-scattered noise in A-scan is 

important since it contains information that can be used to characterise the 

microstructure as well as placing a limit on flaw detectability. The signal obtained 

from within the thickness of the casting was subjected to signal processing. With the 

rough surface range (Ra0) the scattering was the most prominent feature and 

variation in signal amplitude due to defects was hard to detect. It was difficult to 

uncover the prominent features as listed in Table 2.2. It was also hard to detect the 

multiple defect echo amplitude due to the large reduction in the amplitude of the 

ultrasonic signal caused by the rough sections of the casting. Therefore, features to 

be input to the neural network classifier were confined to the signal waveform. 

 

In terms of the neural network configuration, in order to determine the 

smallest applicable number of neurons in the hidden layer, training and testing were 

carried out on several different sized neural networks. This is a well known general 

procedure which has been followed by a number of researchers [77,80,97,102-114].  
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As mentioned in Section 2.7.5, Rao et al. [111] applied a systematically 

optimised method to select neural network parameters for signal processing. Even 

though their work was carried out using a different NDT method (eddy current 

testing), it is relevant to this research in terms of selecting suitable neural network 

parameters. The results of their work as presented in Figure 2.5 are comparable with 

the results of this research presented in Figures 6.3 and 6.4 (in Section 6.3). The 

relevance of Rao et al. [111]’s work lies in the fact that they also successfully 

extracted useful information from a noisy analog signal. It is pertinent to state that 

Roberts and Penny [145] have successfully implemented the method used by Rao et 

al. [111] in an ANN application, while studying the advantages and disadvantages of 

neural networks. 

 

As presented in Section 2.7.4, Raj and Rajagopalan [89] in their work 

recommended the use of combined signal processing techniques such as Artificial 

Neural Networks (ANN), Knowledge Based Systems and Computer Aided 

Visualisation techniques to meet the requirements of NDT & E applications. A 

similar approach (combination of different signal processing techniques) has been 

followed in this research with regard to the pre-processing of ultrasonic signals prior 

to input to an optimised neural network. The application of different types of pre-

processing techniques to ultrasonic signals prior to input to a neural network for 

defect identification was discussed in Section 6.5.  

 

Rajagopalan et al. [134] compared outcomes associated with using natural 

and artificial defects, and a mixture of them in their work on an eddy current based 

inspection application. This is identical to the approach followed in this research and 

presented in Section 7.4. The important conclusion drawn from their work was that 

use of simulated defects to train artificial neural networks for identifying real defects 

(gas porosity defects) was effective. This supports the approach adopted in this thesis 

where simulated and actual defects were used for training and testing of the neural 

networks respectively as described in Chapter 7 (Section 7.4). 
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8.5 DEFECT CLASSIFICATION 

8.5.1 Overview  

In this section, the process of selecting signal processing parameters has been 

described with reference to the work carried out by other researchers on similar NDT 

applications. It is apparent that the choice of the signal processing technique is 

application dependent (Section 2.7.4). The next step was the analysis of the 

performance of the different signal pre-processing techniques. The results of this 

exercise were presented in Chapter 7. Other researchers’ contributions to this field 

are presented in the following sections, with reference to the research described in 

this thesis. 

 

 

8.5.2 Single Mode Pre-processing 

In all these methods broadband ultrasonic signals were used, which were 

analysed either in the time or frequency domains. These signals were usually time-

limited or band-limited. The important point observed while using frequency analysis 

in the first place was the breakup of the time domain ultrasonic signal into frequency 

components. In the case of smooth surface castings this procedure allowed 

differentiation between frequency components caused by background signal noise 

and those caused by a defect. However, this was not the case for rough surface 

castings, as the frequency components associated with defects could not be separated 

from those associated with signal noise from the rough surface. The frequency-

domain processing techniques are not appropriate when the defects are close to the 

surfaces or when the echoes overlap due to a rough surface. This fact was 

demonstrated by the significant difference in classification percentages between 

smooth and rough surface castings as mentioned in Section 7.3.2.  

 

As described in Section 2.7.3.3, PCA is a classical multivariate data analysis 

method that is useful in linear feature extraction and data compression. The 

application of PCA to the noisy signal changed the covariance matrix of the 
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investigated signal by adding a diagonal matrix, with corresponding variances of 

individual noise components on the diagonal. In the case of a defect free signal with 

noise, this led to the same increase of all eigenvalues as computed for the clear 

signal. When the signal-to-noise ratio was sufficiently high, the noise would mainly 

affect the directions of the principal components (Section 2.7.3.3) corresponding to 

smaller eigenvalues. This allowed the neural network to discard the finite variance 

due to the noise by projection of the data onto the principal components 

corresponding to higher eigenvalues (Section 6.5.3). This in turn also led to a higher 

loss of the signal information; i.e. one has to deal with the balance between noise 

reduction and information loss. In this case, the loss of information along with the 

clustered front wall echo resulted in a lower classification percentage with the neural 

network classifier. 

 

The selection of a suitable mother wavelet is a critical step in the application 

of the wavelet transform in any signal processing application [102]. The selection of 

an appropriate WT type to pre-process the ultrasonic signals was described in 

Chapter 6. This approach enabled the achievement of a slightly better classification 

percentage than with the raw signal for both rough and smooth surface casting 

sections as presented in Figure 7.9. Through experimentation Daubechies wavelet 

type (db5) was identified as the most suitable in achieving the highest classification 

percentage for both the rough and smooth surface castings (Section 6.5.4). However, 

the selection of a suitable mother wavelet for pre-processing did not generate a 

classification performance of more than 95% for the ultrasonic signals from smooth 

surface castings. The performance of the wavelet transform (WT) in relation to the 

rough and smooth surface signals varied significantly with the standard deviation of 

4.1% and 5.3% respectively.  

 

The results illustrated in Figure 7.9 demonstrate that a low classification 

percentage was obtained with both WT and PCA signal pre-processing techniques. 

This could be compared with the results obtained by Lázaro et al. [98], who applied 

the discrete wavelet transform for de-noising ultrasonic signals contaminated with 

grain noise. In their case, the increase in the grain noise reduced the performance of 

the wavelet transform. In the research described in this thesis, it has been observed 
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that the increasing surface roughness leads to a reduction in defect classification 

percentage when the wavelet pre-processing techniques was used. 

  

The difference in classification percentage for rough and smooth surfaces was 

illustrated in Figure 7.9. The overlapping feature regions encountered with rough 

surface castings resulted in deteriorating of signal classification performance. This 

was mainly due to the clustered front wall signal echo obtained at the rough casting 

surfaces. To minimise the negative effects of multiple front wall echoes and to 

achieve a better classification performance more effective feature extraction 

approaches have to be identified. Therefore, the use of a combination of signal pre-

processing techniques was investigated to achieve improved signal classification 

using a neural network. 

 

 

8.5.3 Hybrid Mode Pre-processing 

As stated in Section 8.5.2, there was a need to apply different signal pre-

processing approaches to achieve an improved classification percentage (> 75%) for 

the signals obtained from rough surface castings. A different approach was 

investigated, in which time-frequency analysis on the non-stationary received signal 

was carried out, and thereby transformed it into a two-dimensional component. One 

dimension of component is represented by frequency and other by time. This 

procedure should assist the neural network to identify the salient features of the 

received signals. Such an approach might also be inefficient due to the highly 

redundant nature of the time-frequency signal. The redundant components of the 

time-frequency signal might be removed prior to processing, thereby enhancing the 

efficiency of computation. To do so, principal component analysis was applied to the 

time-frequency signal. This process of applying the two or more pre-processing 

approaches is known as hybrid mode pre-processing and is used to achieve improved 

signal classification outcomes. 

 

In this research, FFT, PCA and WT type signal pre-processing techniques 

were combined in different modes as presented in Chapter 7. The classification 
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performance obtained by combining PCA and WT pre-processors was not improved 

when compared to a situation where a FFT type pre-processor was used on its own 

(Figure 7.12). Combining the WT and FFT pre-processing techniques provided an 

improved classification percentage in comparison with those involving PCA with 

either FFT or WT.  

 

The application of FFT on a signal processed using WT (WT/FFT type) has 

been carried out by Matalgah and Knopp [104] and Wang et al. [105] and this has 

been presented previously in this thesis (Section 2.7.3.5). There was a difference in 

their approaches of combining WT and FFT type pre-processing techniques. 

Matalgah and Knopp [104] initially applied WT then inverse WT, and finally, the 

FFT on the original signal in their work. However, Wang et al. [105] applied FT 

directly on the output signal processed using WT. The wavelet coefficients were 

obtained after down-sampling in their method and were used for further signal 

analysis. The research described in this thesis adopted a similar approach to that of 

Wang et al. [105], where FFT was applied on the output obtained by applying WT to 

the original signal (Section 2.7.3.5). In this case, the WT acts as a low pass filter on 

the raw input signal. Then, the FFT provides the power spectrum of the filtered 

signal. Hence, the combination could be stated as the spectrum of the smooth signal 

(filtered), which was used as an input to the neural network classifier. It should be 

also noted that WT provides a time resolution of the signal while, FFT provides 

frequency resolution. These two transforms combine to produce a better resolution in 

both time and frequency domains as confirmed by the results presented in Section 

7.5.4.   

 

A different approach, the application of WT on the output signal produced 

after the FFT operation (FFT/WT type) produced a significant improvement in the 

ultrasonic signal classification percentage from 62.6% (raw signal classification) to 

83.3% for Ra0 surface type (Section 7.6.2). Though the WT exploits both time and 

frequency information of a signal, an output processed using a FFT will contain only 

the frequency information. The application of FFT on the raw signal resulted in a 

power spectrum. Then, the application of Wavelet filters on the power spectrum of 

the signal removed the fine spectral details i.e., small spectral details which contain 
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very little significant information in relation to the raw signal. It is important to make 

the correct choice of filters (i.e. suitable coefficients for WT) to ensure the best 

possible classification of weak ultrasonic signals using the neural network approach. 

This approach smoothens the spectrum of the signal (acts as a low pass filter), which 

improves the performance of the neural network classifier significantly. Another 

important factor that assists in this classification approach is the reduction in the 

number input nodes from 220 (raw signal type) to 128 (out of FFT/WT combination 

pre-processing type). This decreasing number of input nodes in the network, lead to a 

decrease in the number of network weight values to be calculated.   

 

The advantage of combining FFT and WT in that order lies in the fact that the 

WT exploits the frequency information contained in the signal after processing 

through FFT. Subjecting the signal output of FFT to successive approximations 

through the application of WT, renders the signal less noisy and lowers its amplitude. 

However, successive approximation results in loss of frequency information 

particularly in the high frequency bands (due to low pass filter). This research has 

demonstrated that the use of both stationary (FFT) and non-stationary (WT) signal 

processing techniques have the ability to improve performance in terms of analysis 

of weak and noisy ultrasonic signals in order to detect defects in castings.  

 

The combination of FFT/WT resulted in the removal of unwanted signal 

noise contained in the data. As stated earlier the input nodes were reduced from 220 

to 128 in this combination type. Further signal pre-processing with PCA resulted in 

further reduction in the number of input nodes in the neural network classifier. There 

was no significant improvement in the classification percentage with FFT/WT/PCA 

combination type as presented in Figure 7.14. There was a large variation in the 

standard deviation of the classification percentage when the FFT/WT/PCA type pre-

processing method was used in comparison with the FFT/WT type pre-processing 

method. This might due to the fact that the application of PCA to FFT/WT 

combination type resulted in the loss of useful information in the process of noise 

removal. It could be concluded that the hybrid FFT/WT type pre-processing method 

results in the best classification performance and minimum variation in standard 
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deviation of classification when compared with all other pre-processing methods 

investigated in this research.  

 

Finally, it could be concluded from the results presented in Chapter 7 

(Sections 7.3, 7.5 and 7.6) that: 

• The information relating to the frequency domain works better than that 

relating to the time domain with the neural network, because it is less 

sensitive to the shift in the signal and possibly relative shift of the defect 

component in the signal caused by surface roughness (i.e., movement of 

front wall echo, defect echo and back wall echo signals) with respect to time. 

• The application of PCA as a pre-processing tool in this research did not 

improve the classification percentage of the ultrasonic signals obtained from 

both smooth and rough surface castings due to loss of useful signal 

information. 

8.6 LIMITATIONS 

According to Krautkrämer and Krautkrämer [5], the major limitations in the 

application of ultrasonic NDT to castings are associated with their material 

properties, surface roughness and shape. This problem can be reduced with the 

selection of appropriate ultrasonic inspection parameters and the application of 

appropriate signal processing techniques, as presented in Chapters 5, 6 and 7. 

However, there is no common system that is able to accommodate and solve all the 

problems related to ultrasonic inspection of castings. 

 

In this thesis, a neural network classifier used the waveform of the signal for 

classification purpose. However, other prominent features (Table 2.2), as mentioned 

by Thavasimuthu et al. [80] could not be applied in this research problem due to high 

ultrasonic signal scattering from the front rough surface of castings. The surface 

roughness could not be reduced through machining because even light machining 
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cuts would penetrate the relatively sound surface, exposing the unsatisfactory 

structure with defects. Furthermore, this research focused on castings in the as-cast 

state. Application of the features used by Thavasimuthu et al. [80] in this research 

could have contributed to the achievement of a higher classification percentage. 

However, the application of signal pre-processing techniques in combination with 

neural networks assisted in improving the accuracy of detecting gas porosity defects. 

This is in comparison with a scenario where signal pre-processing was not carried 

out on the ultrasonic signals prior to submitting them to a neural network for 

classification. Nevertheless, 100% classification was not achieved with the signals 

from rough surface sections of castings. Until a satisfied level of classification is 

achieved, the ultrasonic inspection methodology investigated in this research cannot 

be successfully implemented in industrial environments to detect defects in 

aluminium die castings. What is termed a satisfactory level of classification can vary 

from industry to industry as presented earlier in the thesis (Section 1.2). 

 

Another limitation to the methodology presented here is associated with the 

signal processing speed of the MATLAB toolbox. Further improvements in 

processing speed may be made through the compilation of MATLAB code into a 

stand-alone application such as MATLAB complier. However, the application of 

MATLAB for signal processing can affect the classification time and it might not be 

a long term solution for an on-line inspection system. Hence, there is a need to 

develop dedicated software for this specific application to achieve high speed 

classification.   

8.7 SUMMARY 

This research program was based on the use of rough surface castings 

containing a mix of actual and simulated defects. The effect of material properties of 

the casting on ultrasonic inspection was investigated. It aided in the selection of a 

suitable frequency range to detect gas porosity defects in the rough surface sections 
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of the castings. Even though calibration assisted in developing a suitable 

experimental methodology, the near surface defect detection was still difficult due to 

the clustered front wall echo obtained from the rough surface castings. The scattering 

from the rough surface of the castings masked the defect signal when the defect was 

close to the front surface. 

 

In contrast to the work of other researchers, this research attempted to classify 

defect signals from aluminium castings with surface roughness over 50 μm. The 

research led to the successful neural network classification of defects from surfaces 

with roughness values up to 100 μm. A success rate of 84% was achieved with pre-

processing of ultrasonic signals using combinations of (a) Fast Fourier Transform 

(FFT) and Wavelet Transform (WT) type and (b) FFT, WT and principal component 

analysis. FFT/WT was selected as the most suitable pre-processing method for this 

research problem due to its low variation in classification performance. The inclusion 

of PCA as a pre-processing tool in the FFT/WT pre-processing combinational 

approach did not improve the classification percentage of the ultrasonic signals 

obtained from both smooth and rough surface castings. 

 

The analysis of the performance of the different signal pre-processing 

methods when used on their own emphasised the need for a hybrid type pre-

processing approach. However, it is evident from previous research that what is 

termed the most suitable pre-processing approach varies with the characteristics of 

the signal received from the sensing system used.  

 

The methodology described in this thesis has application in the development 

of ultrasonic inspection techniques for as-cast products. However, the limitation of 

the research outcomes is that the current research was only undertaken in a narrow 

domain namely, detecting defects of size 0.5 mm or higher in aluminium casting with 

surface roughness up to 100 μm and small grain size.  
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CHAPTER 9.  

 CONCLUSIONS AND FUTURE 

WORK 

9.1 OVERVIEW 

Limits of defect detectability are of serious concern to both manufacturers 

and users of castings. Due to the complex nature of castings and the casting process, 

it is difficult to set definite rules for inspection systems to detect sub-surface defects. 

Hence, the thrust of this research was to investigate, within the specified domain, the 

possibility of detecting sub-surface gas porosity defects in aluminium die castings 

with rough surfaces. This final chapter of the thesis outlines the specific 

contributions of this research work and future directions arising from the research 

findings. 

9.2 CONTRIBUTIONS OF THE RESEARCH  

Because of the scope of the industry and the widespread use of castings, 

engineers often find themselves in a position where knowledge of the casting process 

and its problems becomes a vital part of their work. Specifically the quality of the 

casting process is the important concern of engineers in this field, and quality control 

is dependent on Non Destructive Testing & Evaluation (NDT&E). Ultrasonic NDT 
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inspection techniques are at times used to inspect castings, however, their use is 

restricted by the metallurgical and physical characteristics of the castings. Hence, this 

research program was undertaken in accordance with the following problem 

statement: 

 

To investigate the possibility of using an ultrasonic inspection technique to 

detect small sub-surface defects (gas porosity) near the front rough surface of 

castings with varying grain size by classifying weak and noisy ultrasonic signals  

using suitable signal processing techniques.  

 

The following were the major outcomes from each chapter presented in this 

thesis: 

 

1. The literature search (Chapter 2) focused on obtaining information on 

ultrasonic inspection of castings with complex shape, varying grain structures 

and surface roughness and containing irregular porosities. The literature 

review revealed that there has been a great deal of research work relating to 

the above factors, which have been separately examined in the context of 

ultrasonic inspection of castings. The literature identified a need to determine 

the limitations of NDT in the inspection of aluminium die castings. 

Additionally, the literature indicated that the application of an artificial 

intelligence approach had not been explored to its full potential for 

classification of weak ultrasonic signals obtained from rough surface 

aluminium die castings.  

2. The background information on ultrasonic inspection and neural networks 

(Chapter 3) aided in the development of a suitable procedure for the 

inspection of aluminium die castings with rough surfaces. 

3. The development of a reliable calibration methodology (Chapter 4) greatly 

reduced the uncertainty and significantly increased the accuracy and 

reliability of the experimental results. It also provided a foundation for 

developing a generalised procedure to ensure the reliability of results of any 

set of experiments involving ultrasonic immersion testing. 
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4. Research as described in this thesis demonstrated that the loss of the 

ultrasonic signal echo due to grain size variation was comparatively small 

when compared with the variation caused by changes in the surface 

roughness of the casting. Subsequently, a methodology (Chapter 5) was 

developed to identify a suitable frequency for inspecting aluminium die 

castings with appreciable surface roughness and small to medium grain 

structure. The results provided guidelines for the selection of a suitable 

ultrasonic transducer frequency range (5 to 10 MHz) that accommodates 

variations in material properties as well as the critical defect size to be 

detected. 

5. Use of a neural network approach to defect identification in combination with 

suitable signal pre-processing techniques successfully eliminated the effect of 

noise in ultrasonic signals from castings with surface roughness ranging from 

50 μm to 100 μm. The raw signals were difficult to classify using only the 

neural network approach. Hence, the use of Fast Fourier transform (FFT), 

Principal Component Analysis (PCA) and Wavelet Transform (WT) in pre-

processing of signals prior to input to the neural network for signal 

classification was investigated (Chapter 6).  

6. The results presented in Chapter 7 were obtained from ultrasonic immersion 

testing of castings with varying surface roughness. The results showed that 

with the selected frequency range it was difficult to detect sub-surface defects 

close to the front rough surface of the castings by analysing only the raw 

ultrasonic signal (Section 7.2). However, there was a possibility of applying 

signal processing techniques to achieve the defect identification for castings 

with surface roughness up to 100 μm. Hence, a combination of signal pre-

processing techniques was applied on the raw ultrasonic signal. The results 

showed similar poor classification was achieved with the combination of 

FFT/PCA, WT/FFT and WT/PCA type signal pre-processing techniques. The 

classification of the signals pre-processed with the combination of FFT/WT 

and FFT/WT/PCA classifiers provided much better classification of more 

than 95% and 84% for signals from castings with smooth and rough surfaces 

respectively. The overall best signal pre-processing technique was FFT/WT 

combination type. X-ray and visual inspections were carried out on the 
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castings inspected with ultrasound and successfully classified with an 

appropriate signal pre-processing technique to independently confirm the 

results (Section 7.8). It was found that defects as small 0.5 mm could be 

detected with the ultrasonic technique for castings with surface roughness up 

to 50 μm. Further, when the surface roughness was in the range of 50 to 100 

μm, it was not possible to detect defects of a size less than 0.7 mm in 

diameter. As expected it was found that there was a lower classification 

percentage for the castings with rough surface (Ra0) compared to smooth 

surface (Ra2) as presented in Figure 7.14. This was due to the fact that the 

defect amplitude was much lower than the amplitude of the noise caused by 

the surface roughness, as such it was not possible to distinguish the defect. 

7. The discussion of the results (Chapter 8) compared the outcomes of this 

research work with the work of other researchers. The inspection technique 

developed in this research lead to identification of the both real and simulated 

defects from ultrasonic signals obtained from the casting sections with 

surface roughness over 50 μm, which has not been achieved previously. In 

this research the investigation of different signal pre-processing methods has 

been carried out. This work has also demonstrated the advantages of using a 

hybrid signal pre-processing approach to address a classical signal processing 

problem. 

 

There were a number of important contributions made throughout the 

research program in relation to the ultrasonic inspection of gas porosity defects in 

aluminium die castings. These contributions relate to the literature survey, ultrasonic 

inspection of castings, ultrasonic data processing, and use of artificial intelligence in 

ultrasonic inspection applications. Finally, significant contributions of this research 

can be summarised as follows: 

• Real sample castings were used in this research. This is important as in the 

past there has been poor correlation between tests conducted in the research 

laboratory and in practice on the shopfloor.  

• An investigation was carried out to select an appropriate inspection 

technique for aluminium die castings. Ultrasonic immersion testing 

experiments were carried out on castings with real and simulated defects. 
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• An ultrasonic inspection methodology was developed for detecting gas 

porosity type defects in aluminium die castings with varying surface 

roughness from 50 μm to 100 μm.  

• The effectiveness of classification of ultrasonic signals using neural 

networks was demonstrated and it was shown that it was possible to detect 

porosity type defects as small as 0.5 mm in castings with surface roughness 

up to 50 μm. Defects with 0.7 mm diameter can be detected in the castings 

with surface roughness up to 100 μm with the signal pre-processing 

combination of WT/FFT, FFT/WT and FFT/WT/PCA techniques. The best 

classification performance was achieved with FFT/WT type signal pre-

processing technique. 

9.3 PROPOSED FUTURE WORK 

The influence of surface roughness on the ultrasonic inspection of castings 

was investigated in this research. Furthermore, the experimental approach developed 

in this research can be extended for investigation of the ultrasonic wave propagation 

in castings with surface roughness levels above 150 μm. This will be of immense 

assistance in carrying out research on casting with rough surfaces such as sand 

castings and gravity die castings in the future. 

 

The algorithms developed in this research program were executed on a 

computer system on which the signal processing tests were undertaken. Given the 

continuous increase in computation speed, the algorithms could be executed in under 

a few minutes compared to hours of processing time in the work to date. It is 

anticipated that this execution time would decline as computing technology 

improves. Another factor, with respect to the current system, is the application of 

MATLAB for signal processing. This is not the preferred solution in an industrial 

inspection system. There is a need for incorporating the signal processing unit within 
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the ultrasonic inspection system to provide solutions for both on-line and off-line 

inspection. This is worthy of investigation.  

 

A future investigation with regard to signal processing could incorporate 

signal pre-processing and artificial neural network software codes in a single toolbox 

(similar to toolboxes available in MATLAB). This toolbox could also incorporate 

expert systems and data interpretation techniques with the ability to accommodate 

different materials, defects and component shapes for ultrasonic inspection of 

castings. Such a toolbox could be effectively integrated into the casting production 

system. 

 

A recommendation from this research is to develop a mother wavelet with a 

shape similar to that of the ultrasonic signal section relating to a defect instead of 

selecting a pre-defined mother wavelet type such as Daubechies and Haar wavelets 

which were investigated in this research. If a new mother wavelet can be developed 

to match the defect signal, the ANN will more easily identify sharp flaw echoes 

during defect classification. Similarly, further research work has to be carried out on 

hybrid signal pre-processing methods, which have been explored in this research. 

Even though the highest signal classification has been achieved with the FFT/WT 

type of pre-processing in this research, in-depth theoretical and mathematical 

analysis is required to determine more detailed reasons for the effectiveness of this 

approach. The combination of FFT, WT and PCA in combination with other signal 

pre-processing methods should be investigated in order to achieve improved defect 

classification from weak and noisy ultrasonic signals.  

 

The sizing of defects has not been investigated in this research work. Hence, 

the follow up of this research could involve the application of fuzzy neural networks 

in determining the type of defects such as cracks, gas porosity, inclusions shrinkage 

porosity and their size, location and orientation. 
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9.4 FINAL SUMMARY 

The main thrust of this research on ultrasonic inspection of aluminium die 

castings was to detect gas porosity defects in rough surface castings. A methodology 

was developed to address the project objective. The in-gate section of the structural 

oil sump pan was the critical part of the casting in relation to the ultrasonic 

inspection task addressed in this research. The developed experimental procedure 

provided guidelines for selecting suitable transducer frequencies that accommodate 

variations in material properties while taking into account the critical defect size to 

be detected. Then, the final parameters of the feed-forward back propagation neural 

network were selected for processing the ultrasonic signals. The results showed that 

the classification of the signals pre-processed with the combination of WT/FFT, 

FFT/WT and FFT/WT/PCA classifiers provided improved classification compared to 

other combinational and single technique approaches investigated in this research. 

Not withstanding the fact that 100% classification has not been achieved for the 

signals obtained from rough surface castings with this technique, it can be stated that 

a significant step has been taken in developing an approach to classify gas porosity 

defects. The analysis of the performance of the different signal pre-processing 

methods emphasised the requirement for a hybrid type pre-processing approach.  

 

The research documented in this thesis provides an insight into the operation 

and performance of the ultrasonic NDT method in detecting gas porosity defects in 

aluminium die castings. The work has led to a number of contributions to the field as 

mentioned previously, and demonstrated the effectiveness of the hybrid signal pre-

processing approach in classifying weak and noisy ultrasonic signals using artificial 

neural networks. 
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APPENDIX B  
ULTRASONIC IMMERSION TESTING 

SET UP 

Figure B.1 shows the ultrasonic immersion testing experimental set-up. This 
figure expands on the ultrasonic immersion testing experimental rig presented in 
Section 4.4.3. 
 

 
 

 
 

Figure B.1 Ultrasonic immersion testing experimental set up 
 
In Figure B.2 the structural oil sump pan part (A) was immersed in water and 

Sintolin solution, which makes the water pale green in colour. The casting was 
mounted on the Perspex sheet (B) with the help of the alignment pins (C) to keep the 
casting in the same position every inspection cycle. The probe handling section (D) 

PUMA Robot 
Controller  

PUMA Robot  EPOCH III 
Water Tank Ultrasonic 

Transducer 
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B 

C

E

D

holds the 10 MHz 25.4 mm focus probe (E). The inspection was carried out along the 
in-gate section of the casting. 
     

 
 

Figure B.2 Ultrasonic inspection of structural oil sump pan part with 10 MHz 25.4 
mm focus probe 

 
 

A cut section of the structural oil sump pan (SOSP) casting is shown in 
Figure B.3. The arrow mark at ‘A’ shows the starting point of the PUMA robot with 
ultrasonic transducer scanning path up to point ‘B’ in Figure B.3. The probe handling 
device (PUMA robot) was programmed to move along the in-gate section with a 
constant water path distance. Ultrasonic A-scan signal type was stored while the part 
was scanned with the ultrasonic transducer. Each A-scan signal stored in the EPOCH 
III equipment provided information of the part at a particular location long the in-
gate section of the casting.  

 
 
 
 
 

 

A
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Figure B.3 PUMA robot scanning path on the critical section of SOSP part 
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APPENDIX C  
    PROBE AND PART DISTANCE 

CALCULATION  

This appendix presents how the distance between probe and part were 
calculated for Chapter 4, Section 4.4.3.4. The laser pointer angle (α) can be used to 
find the distance between the probe and the part (x). The distance between the probe 
and the laser pointer was fixed at 50 mm during the design of the device as shown in 
Figure C.1. 

 
x can be calculated from the Figure 3.8. Tan α is equal to the ratio of distance 

between probe/part distance and probe/laser pointer i.e.: 
 
Tan α = opposite side/ adjacent side and it implies that Tan α  = x / 50 
Therefore, x = Tan α * 50 
 

 
 
 
 
 
 
 
 

 
 
 

Figure C.1 Line diagram to calculate the distance between the probe and casting 
surface 

 
Hence, from the laser pointer angle, the distance between the probe and part 

can be calculated. It provides the water path distance in the immersion testing. 
According to ASTM E 1001-99a1 standards, the maximum variation in the water 
path distance that can be allowed for the ultrasonic immersion testing is +/- 1.6 mm. 
Hence, the tolerance of the laser pointer angle allowed in this inspection process is 
+/- 1˚. 

                                                 
1 E 1001-99a – Standard practice for detection and evaluation of discontinuities by the 

immersed pulse-echo ultrasonic method using longitudinal waves, Annual Book of ASTM Standards, 
PA, USA, 1999 p 1-9.  

x 

Casting Surface  

Transducer  
Laser Pointer 

α 

50
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APPENDIX D  
SURFACE PROFILE 

MEASUREMENTS 

This appendix gives details of the surface roughness measurements carried 
out on small casting sections. This follows on from Section 4.5.3 in relation to 
surface roughness analysis of the in-gate casting sections. The surface roughness 
measurements were carried out using a surface profile measuring instrument 
(Perthometer S5P). Figure D.1 shows the sample casting sections with part numbers 
F48, F50 and F55. These were the cut sections of structural oil sump pan castings.  

 

 
 

Figure D.1 Sample casting sections F48, F50 and F55 with simulated defects 1 
mm, 0.7 mm and 0.5 mm diameter holes respectively 



 
APPENDIX D. SURFACE PROFILE MEASUREMENTS 

D-2 

Table D.1 presents the measurement carried out on three in-gate casting 
sections with part numbers F48, F50 and F55 (as shown Figure D.3) after machining 
the rough front surface. Three surface roughness values were obtained at each point 
of measurement and average values of three measurements are obtained at the end. 
These average surface roughness values have been used for classifying the castings 
into three different groups Ra0 (101-150 μm), Ra1 (51-100 μm) and Ra2 (0-50 μm) 
Different surface roughness parameters such as Ra, Rz and Rq were also obtained 
during each measurement. However, only Ra values were used in final analysis in 
this research. Similarly, the measurements were obtained for Ra1 (50 to 99 μm) and 
Ra0 (100 to 150 μm) surface groups on the same casting sections before machining 
the front rough surface. 

 
Particular areas of the castings were referred to P1 to p10 for the ten side-

drilled holes as shown in Figure D.1. However, as mentioned in Section 4.5.2 not all 
of the 10 locations were suitable for subsequent analysis. Therefore, it can be seen 
that only profile measurements for selected regions were documented in this 
appendix.  For example, for part number F48G3, only P1, P2, P5, P6, P7 and P8 were 
recorded.  
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Part 
No  

Section 
No Ra0(1) Ra0(2) Ra0(3)

Ra0 
(average) Ra1(1) Ra1(2) Ra1(2) 

Ra1 
(average) Ra2(1) Ra2(2) Ra2(3) 

Ra2 
(average) 

F48G3 P1 121.5 126.2 112 119.90 80.9 98.6 51.7 77.07 17.9 21 10 16.30 

  P2 102.6 120.4 112.6 111.87 75.9 84.2 52.1 70.73 17.6 15.8 10.1 14.50 

  P5 120 125.7 134 126.57 65.1 122.1 59.7 82.30 16.6 20.5 8.4 15.17 

  P6 122.7 117 129.9 123.20 86 60.7 53.6 66.77 16.4 12.8 7.1 12.10 

  P7 127.5 144.4 117.1 129.67 99.6 94.4 80.5 91.50 22 27.1 11.8 20.30 

  P8 118.8 122.2 116.7 119.23 69.9 80.5 65 71.80 16.1 16.8 13.1 15.33 

F50G3 P1 102.7 118.8 113.3 111.60 89.4 69.4 51.3 70.03 16.2 15.4 10.9 14.17 

  P2 117.4 119.4 113.6 116.80 68.1 79 57.5 68.20 14.2 14.9 11.1 13.40 

  P3 129 139.8 124.9 131.23 88.9 99.4 53.3 80.53 22.2 42.1 12.5 25.60 

  P5 119.2 123.4 134 125.53 74.7 82.8 55.2 70.90 16.1 19.3 10.7 15.37 

  P7 125.6 122.9 139.9 129.47 98.7 86.1 60.3 81.70 19.9 18.7 7.4 15.33 

  P9 149.7 124 121.1 131.60 73.8 88.3 81.8 81.30 16.1 19.3 17.1 17.50 

F55G3 P1 137.1 119.9 122.5 126.50 65.6 79.4 50.7 65.23 14.6 15.9 9.6 13.37 

  P5 115.2 120.6 148.4 128.07 55.1 74.5 50.1 59.90 11.8 16.7 6.6 11.70 

  P8 138 125.3 120.6 127.97 79.5 88.7 83.8 84.00 20.5 20.8 16 19.10 

  P9 111.3 140.9 101.5 117.90 84.7 92.3 75.1 84.03 19.9 17.4 15.9 17.73 

  P10 105.5 119.5 104.8 109.93 98.6 74.6 55.2 76.13 20.3 15.6 12 15.97 
 
                   Table D.1 Surface roughness measurement values (μm) from Perthometer instrument for F48G3, F50G3 and F55G3 parts  



 
APPENDIX E. RELIABILITY TESTING SECTIONS 

E-1 

APPENDIX E  
RELIABILITY TESTING SECTIONS 

This appendix presents the part used in the reliability testing of the equipment 
in Chapter 4, Section 4.6.4. Figure E.1 shows the bearing plate section of the manual 
transmission case with C2 and C5 sections. In Figure E.1, C2 is shown as A, the 
defect free section, and C5 is shown as B, the section with defect. The X-ray 
inspection was carried to detect the defect and defect free sections in the casting.   

 
 
 
 
 
 
 
 
 
 
             (a)           (b) 

 
 
 
 

                       (a)        (b) 
Figure E.1 Bearing plate cut section of manual transmission case with 

sections (a) C2 – A and (b) C5 - B 
 

A 

B 
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APPENDIX F    
A-SCAN FILE CONVERSION TO M-

FILE TYPE 

This appendix expands on the data processing methodology explained in 
Chapter 6, Section 6.2. It focuses on the third stage in Figure 6.1. i.e., the conversion 
of A-scan file data format to M-file type (MATLAB format). The steps involved in 
this conversion process are shown in Figure F.1. 

 
                                                             Raw NDT A-scan Signal 
 
 
 

 
M-File 

 
 
 
 
 
 
                                                               
 
 
                               
 

                        Final Program         
                                                                                                                                                     
                                                                                       

Figure F.1 Conversion of M-file to MATLAB input file format 
 
 
The A-scan file obtained from the EPOCH III has a particular format of 

storing data, and only critical values such as amplitude values of the waveform were 
needed for the signal processing. A-scan files were stored in text file format with txt 
extension. Then, a program was written in Borland C++ software to obtain the 
critical elements (position and amplitude of the waveform) for the signal processing. 
Once the A-scan files were read the output of the program was an M-file, which had 

Borland C++ Program 

M-file stored in 
Database (folders) 

Programming in 
MATLAB 
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only a matrix of [220 x 1]. Hence, the signal had 220 input nodes to be sent into the 
artificial neural networks for classification. Figure F.2 is a flowchart of the algorithm 
developed to read the signals from the hard disk of the computer and to store them in 
a single structure called ‘M’. The files are read from data input folders which 
contains the data files and all these ‘sig’ values are read into ‘M’ matrix and all the 
target T values are read into‘t’ matrix.  

 
 

Figure F.2 Algorithm to store training signals and target values 

START

INITIALISATION OF 
ARRAYS AND 
VARIABLES 

Folder_num=5
?

          Open    
NNRa*/Folder num

File_num = 10?

Folder_num ← Folder_num + 1 

File_num ← File_num+1 

Open 
dat’i’.m file

n ← n+1

t(n,1) ← T 

Sig’Folder_num’(:,i) ← sig 

M← [sig1,sig2,sig3,sig4,sig5, 
…,sig(Folder_num*File_num-1)]

END
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APPENDIX G  
MATLAB NEURAL NETWORK 

PROGRAM 

This appendix shows a sample program for the FFT and PCA in Chapter 6, 
Sections 6.5.2 and 6.5.3. The following program is written using MATLAB in an m-
file format. The purpose of the program is to read an array of signals from the folders 
stored in the system (database of signals). Then the FFT and PCA were applied on 
the input signals to artificial neural networks. The neural network parameters were 
defined and training, simulating and testing were carried out on the input signals. The 
complete process was carried out in a loop. Finally, the output was sent to separate 
the m-file with the mean classification percentage and standard deviation.   

 
 
% clear all the contents in the memory 
clear all; 
%defining variables 
int folder_num; % number of folders with training signals 
int testfolder_num; % number of folders with test signals 
int file_num; % number of file within the folders 
int file_num_max; % maximum number of files within the folders 
int testfile_num; % number of file within the folders 
int x; 
int y; 
int z; 
int b; 
int folder_num_max; % maximum number of folders for training 
int testfolder_max; % maximum number of folders for testing 
int test_file_max; % maximum number of files within the test folders 
test_file_max = 10; 
folder_num_max = 5; 
file_num_max = 10; 
testfolder_max = 3; 
LOOP_MAX=1; % number of training and testing loops 
EPOCH_MAX = 10; % number of maximum epochs 
 
% creating and opening result file 
fid = fopen('E:\NNInputFiles\Results\FFT_Plot_Ra0.m','wb'); 
fprintf(fid, 'OUTPUT_PERCENTAGE= ['); 
% for to read the input data  
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for file_num = 1:file_num_max 
    for folder_num = 1:folder_num_max; 
        x = folder_num + ((file_num -1) * folder_num_max); 
        eval(['cd E:\NNInputFiles\NNRa0\',num2str(folder_num)]) 
        eval(['dat' num2str(file_num)]) 
        X = fft(sig,256); % applying fft 
        Xyy = X.*conj(X)/256; % calculating power spectrum of FFT output 
        M(:,x) = Xyy; % input to the M array 
    end 
end 
 
% for loop to get the target values 
for file_num = 1:file_num_max 
    for folder_num = 1:folder_num_max; 
        x = folder_num + ((file_num -1) * folder_num_max); 
        eval(['cd E:\NNInputFiles\NNRa0\',num2str(folder_num)]) 
        eval(['dat' num2str(file_num)]) 
        t(:,x) = T; 
    end 
end 
 
f = 100*(0:256)/256;  

% PCA functions for training data 
[length, width]=size(M); % finding out the length and width of the matrix M 
A= Cov(M'); % takes covariance of transpose of matrix M 
B=eye(size(A)); % Dim is loaded from file as the dimension of eigenspace 
 
%No of eigenvector/value combinations found 
SIGMA='LM'; %Largest Magnitude 
[V,D, FLAG]=EIGS(A,B,40,SIGMA); % 40 principal components 
C = V'*M;  

% for loop to get testing data 
for testfile_num = 1:test_file_max 
    for testfolder_num = 1:testfolder_max; 
        y = testfolder_num + ((testfile_num -1) * testfolder_max); 
        eval(['cd E:\NNInputFiles\NNRa0\Test\',num2str(testfolder_num)]) 
        eval(['dat' num2str(testfile_num)]) 
        Y =fft(sig,256);  
        Yyy = Y.*conj(Y)/256; 
        %plot (Yyy,128) 
        %pause(0.5) 
        S(:,y) = Yyy; 
    end 
end 

 
% PCA functions for testing data 
[length, width]=size(S); % finding out the length and width of the matrix M 
A= Cov(S'); % takes covariance of transpose of matrix M 
B=eye(size(A)); % Dim is loaded from file as the dimension of eigenspace 
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%No of eigenvector/value combinations found 
SIGMA='LM'; %Largest Magnitude 
[V,D, FLAG]=EIGS(A,B,40,SIGMA); % 40 principal components 
U = V'*M; 

 
% for loop to get testing data target values 
for testfile_num = 1:test_file_max 
    for testfolder_num = 1:testfolder_max; 
        z = testfolder_num + ((testfile_num -1) * testfolder_max); 
        eval(['cd E:\NNInputFiles\NNRa0\Test\',num2str(testfolder_num)]) 
        eval(['dat' num2str(file_num)]) 
        P(:,z) = T; 
     
    end 
end 
 
errormat=zeros(EPOCH_MAX,LOOP_MAX); 
charmat=zeros(EPOCH_MAX,LOOP_MAX); 
 
% for loop to carry out network training and testing 
for loop = 1:LOOP_MAX 
  
net = newff(minmax(C),[20,10,1], {'tansig','logsig','tansig'}, 'trainscg'); 
 net =init(net); 
 net.performFcn = 'mse'; 
 net.trainParam.show = 20; 
 net.trainParam.epochs= 500; 
 net.trainParam.goal = 0.001; 
 net.trainParam.lr = 0.05; 
 net.trainParam.mc = 0.9; 
  
 %Output Percentage Correctness 
 int THERSOLD; 
 int PERCENT1; 
 int PERCENT2; 
 int PERCENT; 
 int OUTPUT_PERCENTAGE 
 int a; 
 int output_max; 
 output_max = testfolder_max * test_file_max; 
for epoch_no=1:EPOCH_MAX 
        %load train sigs 
        [net, tr] = train(net, C, t); 
        trainoutput = sim(net,C) 
        %load test sigs 
 
        %testing 
        output = sim(net,U) 
        PERCENT1 = 0; 
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        THERSOLD = 0.5; 
        PERCENT2 = 0; 
        OUTPUT_PERCENTAGE = 1 
 
        %simuate &test 
        for a = 1 : output_max % Number of output signals is equal to 20 
            
        % for output <0.5 ie., no defect signals 
            if ((P(a)== 0) & (output(a)< THERSOLD))  
            
                PERCENT1 = PERCENT1 + 1; 
            else 
                PERCENT1; 
            end 
            if ((P(a)== 1) & (output(a) > THERSOLD)) 
                PERCENT2 = PERCENT2 + 1; 
            % for output > 0.5 i.e, defect signals     
            else  
                PERCENT2;  
            end 
        end 
        PERCENT1  
        PERCENT2 
  
        PERCENT = PERCENT1 + PERCENT2; 
    
     % Final output correct percentage  
        OUTPUT_PERCENTAGE = (PERCENT/output_max)*100 
  
        errormat(epoch_no)=0.5; 
         
        charmat(epoch_no,loop)=OUTPUT_PERCENTAGE; 
        figure(1) 
        plot(charmat); 
        pause(0.1) 
 end 
 fprintf(fid, '%f\n',OUTPUT_PERCENTAGE); 
 Output_Matrix(:,loop) = OUTPUT_PERCENTAGE; 
  
end % End of loop 
 
fprintf(fid, '];\n'); 
fprintf(fid,'\nMean ='); 
fprintf(fid,'%f\n', mean(Output_Matrix')); 
fprintf(fid,'\nStandard Deviation = '); 
fprintf(fid,'%f\n', std(Output_Matrix')); 
fclose(fid); 

 
 


